四则运算2及psp0设计
随机生成运算式,要求:
1.题目避免重复。
2.可定制(数量/打印方式)。
3.可以控制一下参数。
要求:是否有乘除法,是否有括号,数值范围,加减有无负数,除法有无余数。
刚开始看到这样一个题目感觉还挺简单,于是从头开始,一步一步的编写代码。但是这次遇到了大麻烦。
我的基本思路是全部用数组来实现,基本是这样的:
1.随机产生num[i]个运算符数组,对应的ch[num[i]]里边放着相应的运算符,类型为string类型。
2.rand1[i][j]数组盛放随机生成参与运算的数,根据算式的形式,运算数要比运算符多一个,所以运算数个数为num[1]+1。
3.rand1[i][j]之所以是二维数组,是因为,每行表示一个式子,列数为参与运算的数的个数。
4.定义两个函数L(int w),R(int w),判断括号的输出,left和right,分别指左括号和右括号,随机输出左括号,参数w加1,当右括号随机输出时,判断是否有左括号,在有左括号的情况下才能输出右括号,而且一个括号不能只包含一个数。
5,.根据输入有无负数,将随机数范围改为了-39~+99之间,方法为rand()%139-99。
我的程序代码如下:
/*随即产生带有括号的30个式子
20133078_yulei*/
#include <iostream>
#include <string>
#include <time.h>//用到了time函数
#define random(x)(rand()%x)
#define N 30 //预定产生30个
using namespace std;
void sort(int a[], int n)
{
int i,j,temp;
for (j=;j<n-;j++)
for (i=;i<n--j;i++)
if(a[i]>a[i+])
{
temp=a[i];
a[i]=a[i+];
a[i+]=temp;
}
} void L(int &w)
{
int q=rand()%;
if(q%==)
{
cout<<"(";
w++;
} }
void R(int &w)
{
int q=rand()%;
if(q%==)
{
cout<<")";
w--;
}
} void main()
{
srand((unsigned) time(NULL)); //用时间做种,每次产生随机数不一样
int rand1[N][]; //30个式子,每列最多10个数
int i=,j=,k=,w=;
string ch[N][]={}; //运算符数组,最多允许10个
int num[N]; //每行式子的运算符的个数
int cc,ff,kk;
cout<<"***输入有无乘除法:(0无/1有):";
cin>>cc;
cout<<"***输入有无负数:(0无/1有):";
cin>>ff;
cout<<"***输入有无括号:(0无/1有):";
cin>>kk;
for(i=;i<N;i++) //每行参与运算的个数,不能为零
{
num[i]=rand()%+;
if(num[i]==)
i--;
}
for(i=;i<N;i++)
{
switch(cc)
{
case :{
for (j=;j<num[i];j++) //参与运算的运算符
{
int k=rand()%;
switch(k%)
{
case :ch[i][j]="+";break;
case :ch[i][j]="-";break;
}
}
}break;
case :
{
for (j=;j<num[i];j++) //参与运算的运算符
{
int k=rand()%;
switch(k%)
{
case :ch[i][j]="+";break;
case :ch[i][j]="-";break;
case :ch[i][j]="*";break;
case :ch[i][j]="÷";
}
}
}
} } switch(ff)
{
case :
{
for(i=;i<N;i++) //产生参与运算的数
{
for (j=;j<num[i]+;j++)
{
rand1[i][j]=rand()%; //参与运算的数据比运算符多1个
if(j!=&&ch[i][j-]=="/"&&rand1[i][j]==) //除第一个数据外的其他数据前边是除法,则这个数不能为零
j=j-; //回溯重新产生
}
}break;
}
case :
{
for(i=;i<N;i++) //产生参与运算的数
{
for (j=;j<num[i]+;j++)
{
rand1[i][j]=rand()%-; //参与运算的数据比运算符多1个
if(j!=&&ch[i][j-]=="/"&&rand1[i][j]==) //除第一个数据外的其他数据前边是除法,则这个数不能为零
j=j-; //回溯重新产生
}
}break;
}
} //数据有了,运算有了,剩下的就是将他们进行组合。
switch(kk)
{
case :
{
for(i=;i<N;i++)
{
cout<<i+<<".";
int k=;
for (j=;j<num[i]+;j++)
{
int p;
L(k);
if (k>)
p=j;
if(rand1[i][j]<)
cout<<"("<<rand1[i][j]<<")";
else
cout<<rand1[i][j];
if(k>&&p!=j)
R(k);
cout<<ch[i][j];
}
for(k;k!=;)
{
R(k);
}
cout<<"= "<<endl; }break;
}
case :
{
for(i=;i<N;i++)
{
cout<<i+<<".";
int k=;
for (j=;j<num[i]+;j++)
{
if(rand1[i][j]<)
cout<<"("<<rand1[i][j]<<")";
else
cout<<rand1[i][j];
cout<<ch[i][j];
}
cout<<"= "<<endl; }
}
} }
程序运行结果1:
aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAp8AAAJZCAIAAABgO8n2AAAgAElEQVR4nO3dsY4rx7YeYD7OfglBiR5AkSIFB4oMpUeJEyXKDgwYMi5gwMlJ7ivcnJkBwzdy5MyPcN9ADkZ71NNVtWpVd5PNrvk+NAROs3r1qqLQPzl7SN7+7V//xWaz2Ww22+j2P7///hW2am+301fHZrPZbLYrbqfnunS32Ww2m+3g7fRcl+42m81msx28nZ7r0t1ms9lstmj70hAccnquS3ebzWaz2YY36W6z2Ww22yW34FX7g9L9jz/++OOPP+I90t1ms9lstu3b89N9Fed7on043f/rf/vvQ9vpD4/NNrr944cvX7796Z/DB/72y7dfvvzw99P7t/U2j5QttVUj/NHp/h7qO6N9S7r/n//7/1rbf/rPvy//K91tD9j+/uPiSfSPv1buXe38xw9fvnz5/h/LYb//9N2XL9/9/Nti2PsV/7dfvn3NdK9M7cW3f/zw/kB988vvxVp99fWBeNoEpbsttZ2V7vtftW9M9//1v/89uUl327HbP3/+ZpXo//hhFRu1V96/fr9Kl7c6H4b9/tN3e6Pl4Zmx9ZcK3e0hsfrPn795r/nPn79ZPgT/+GHx1GrxTOthE3z2I2WbY/t0r91vadLdduRWhHR9+/2n79bD/v7jh1fqv/3y7Zcff/7pu+UL+mTxaHt8ZlSmdsj2+BfN4ZOnv0L9URN8+iNlO2/b8Aa2oFRr55z/7i7dbWdsv/3y7ep36et7v77sK0euftn+9x+/fPPL7x8ibfmqcXH7zxj487X+l+I3/L9+/9fF44ef1pnx+0/f1f4RYfUKtfLjn0X++jeIr8dWF2E9rHwFvNizHryY2vKX5B+bL9r766hvf/rnhyIf1+fjUvTTvfkoL/45Zvkw5TuJH6mi1dW5il8a/f3HL4sKjbWynbKtU/2rbaWSO1fbgb+Qf97fzL+n+9spl1m++lG6247cOr85/5jfv36/urj/8+dv/trz6/dvIxe/H/7w4n6d7h//Yfiva/qv368zu33vh3/p//B7grfcev/xt1++fTvqY0s/t6ZWG7b+PcT785hGzfK1+4cKH9b2bZp/FnlPteXTkUpqhq+VV38DUTx2byu5fNrxy6+DncSP1Ppc7Yl/fM7XPcR29W3zE4Wdv5k/aqv21kn39yB/u7H8r3S3PWQb+51tEVeLJwfvL47/+fM31V8Ir6/ji4v14lnC6rf9//Lxol/euz72z/Z+/f7Ll2+++3aZUt/88nvwbObj1OrDPr4Cfs/LZM2/nmFUFr/ym4ZFGH+8968/nWv+0uUtlT/EYaWZahKnO4kfqfW6tSb+XufDM8XOIbZPup2e6wek++q1+2q/dLcdtg1eNBe/337b3gNvER5fa368XrdfpS0TupKUi8HVHF28yPvwDOPt18vvv1j++GuD8oXgx6nVh63qfM22Vs3KM4bS6rlRsVar837Yyj+H/Lfq3zaWE2z/zibbSfxIrf8fa058MWDx/2H3ENun3E7P9YNfu5epL91tx22VV8PRVjwb+PPq//vyj+n+TLV2Tjwq3b9mz9dXfl+7+vDH5P+6CI/1n/d/fKJTDvvwO4De4NTvAxaLM57uxYF/Ps+on2XZ89PTPQrmRrrLcttqOz3Xt6d79ZX6Muzfbkh324Fb5W3r0Vb8fdav33/58s2PP3yz/nXuD9+vfo2fSvfKs43lv/XGv5n/GmC/vj/VeIv5tz/3K+ay+if81p+efRj255hm3H4YvPplePRE6pB0/8cPX8J3KCwn2Gwm3Un8SP3Lan/8l5vFkg4+6bR9ju30XN+V7hnS3Xbo9vaCb5kKv/3y7duPlb9mKpLmz7+7LiJ/nTS5dF9H1Opvtda/i64l9I8/fP9h/LfffLd48f3jh384L96v//WFaXPYr99/+fb7H7/98KK8MXgdUevmf//pu2UwZzP1r6diHwv2E3H52JUrOfpvBOEj9SHpOxOv/V8RHGL7tNvpuS7dbdfbPr6DK/5b5fXf1r1d1su/tmu/fyxK9/eCX/+ptfh97/JdWMVL1UoqfMy89ge9fZhae9jbs5kPv+1oDv7a6nsDH9a5/oa91Vp9PerDvw68W7RR/7fqSvOr50Z/Gn6eET9S1Yd4PfH1LxvepvAx4Mu1stlecPM587YZtuJv6+bZElO79me2TPzY2Wwnbr4jzjbFNvHbk7pTu/rcr96/zfaSm3S32a69ee1rs9nKTbrbbFfdWu8jt9lsNulus9lsNttsm3S32Ww2m222TbrbbDabzTbbJt1tNpvNZpttW6f7//gvv9psNpvNZrvKlk33/EfUZdzv9+TODWP2H7LB/aPkIaOnGO/rej7JNAGS/vjjj/8Y9ELp/rbnEQGfrBnIjE8WTza2+dnPg4yuz85zHVsQ4NIunO7LH3cGfJxDmVjakC7ddC+H3XvPZsq7XiT2jm1j/+MFMLdrpHt5vd4QY/kL/eFRfUsH0qpguSc+3SdJ92cWB7iia6T7m/vHl7PVyA8u9Oem++ghq3SPY3t1b+bZw2bls5BM/Z2nzqxVt8JQD4evG8AzXSbdD4mHfAyM5uKGpw7BjdvHNLonns20Gjg2marR3vpxTxvJsreRxyuf0/l5Abymh6f7KoH23L59DMLyOh5nQDwgLlLubIVKNWNaO1f3ZhpuTWF0/wbVJluzGFqf1om6I2+Df0tYLVWeIpgXwCW00v1vf/vbYa/dW9fo/P7ujXsvvLsDlqduHR4Xz9SvDl7lSlwz2UlyfF6Qi7f2Q7nqIbk+1f8f8l3FJwr+fyvHxPMCeFnVdP/bV3vT/f4Yt8F0v9fiszUsOGl8YFz8VqRI9ajqvfFSVE+RPyQpON3t49JVjy1nuuEs1bKj08wsQnJeAC+rTPe/ffQSr92Xd1XHLP9butfiM6gcVxg99vYxHlaZtBxQDitrxrk11PlQaLUejtWjEPfQXcbW4fH/CcEZ82cpx3TnBfCyVum+DPVWwJ/z7+6rPfciLG/pC328Z0NaZIaVhwQ932ovH8tjV4MzM62eIqn1cASP1y29PkEz1fPGNfOlbrXVy8wL4JVV073148bX7vvdF973LG8ESbkt80rB+GTl1ZjyRjksGNyd1yMCqZqCrR/LNoZCd+jezOMV7x+dF8ArK9O9/EX9+el+q6Xd8qJ8b6R7ECfxibbV6f7YiroyP4KRmdPFnbROmlFNvlamJtcnWN64fuvYaidDk+2eF+CVXeb97m/KPBiNtG135SOk+mMm+VbDWsmXme+DAm/UaNgfdZajKgNc1yTpvvzvakC3VLy/rNw9PPmab/TeViflgEBwxmPtX59tJ+quEsBncO10XybEULS/D8vEdj7ah2zI/vy8NpzxQOc+jRDtAFdK982Bt+Fy/9CEGCr+OdPrM8wR4HGune75X8OOpkWy5rbfgQ81HNx4ss3z3XauYwsCfCp//PHHv494oXRf/rgz4OPcysRYPo1Ga96LZzCvkHzH9rB//QFYuka6l9f38irfve4PBfBYf/v+RTw+tjrT09PuoecV4QA7XSPd39w//mq6GvlBMJye7vloD1623o9+Eb9atORTh52nHn1CUx0z1MMrPCUCeJrLpPshcZKPjWqy7mnvXntGEtdf9nz/+MwmedKuarS3fix7GzpRpuxtZP3zOZ2fF8AcHp7uyyvpztu3jyFXXvfjzIgHxEXKna0QijOp1UAwsrUCQbWkssNy8asLnp/vqmx3ZGtS3crlztVCteYFMKVnvHZvXdPz+7s37r3w7g5Ynrp1eFw8Wb97uzssf7q4k1Yu3noxPNRA6/HNdxWfKPj/pxwTzwtgGo9N9/tj3AbT/d7O0XJYcNL4wLh43Emm87LP+FzdTsoKq+VtTXxovsFZqmVH17/76NzS8wKYxjVeuy/vqo6JA+8+kqNxnm04NtNJsALlUrQmOxRareVdrWq8Gt1laR0eP7LBGfNnKcd05wUwjcv8u/tqzyoMWoFX3Rnv2ZAumWHx4O5Jy3Wojh8KrdbyBusfd5VspnreuGa+1K2YRblndKEALucafzN/X3jfs7yxM91b5yrPG9fvZkbZf7LJ7vhtqinY+rE89VDoDt2bWf94/+i8AGZyjXS/Ffm9uu7fG+kexE98om118hn83nAmIKtlq5PdEFrV5GtlanK+8aS6mZ3ZOTrZ7nkBZnKZdH9T5scqmaqDgzrJu/KRkznLUJ+tsxyV7nmb57vzLEdVBvg8Jkn3MvC6eTAUvd1gW+4PXiOOvmCN5/XMzNs23/0naq0/AIFrp/syUTbEXvDKeHTPtnO1apaDR59kHOvcpxGiHWDUldJ98+9st4Xx6CE7y8qwJasBsMe10z3/a9vRtEjWDOTLBkeN1n+oDfPdc65jCwJ8KhdO9/vHX2WPHr66K2+0eNBzNxp3nu5xjm1g//oDsHSNdC+v7+VVvnvdzwfDhgjZkO6ZYz9Juj+zOMBncI10f/N+0X8P+DLyNyTlnpHJQ+IXoOem+6qf5AvlnQ10lytTYaiH5LwA5nCZdD8kTvKxEefx5vaWT1AyJ0oO22xVKv6xOpH8iTJlbyPrn1+H/LwA5nCZz5m/f4zn6nU/zox4QFyk3NkKoTiTksWfo+ywXPzqgufnuyrbHXkbXKLWIq/2B/MCmNI1viOue+PeC+/ugOWpW4fHxZP1y2FBPmXEZww6aZ331ovh/HyrJwra3rD+rfr3WrrvXzeAS/D97uthwUnjA+Pi7wPKMcnix2p1slrP6tn3zzcoO7r+3Ufnlp4XwDSu8dp9eVd1zH13useJFYdBMu1WM8pk2FAIDYVW63SrVY1XY2i+3VMHNYMTZWadnBfANC7z7+6rPaswWO1cHTK0Z0O6dIeVbecbawnOktRa3mD9u1PINFM9b1wzX+pWzKLcM7pQAJdzjb+ZL1Ptfmi6t84Vp2lZrZsZ8eB85BwVTtUUbP1YnnoodIfuzax/vH90XgAzuUa634r8Xl337410D+InPtG2OvGPtwen+7bQqiZfK1OT8w2WK5PZmZ2jk+2eF2Aml0n3N2V+BHk5GuHBXfnIyQ94kXTP2zDfQ85yVGWAz2OSdF/+dzWgWyreX1buHl59jVjtMPNaNtPME4zO96gTnThlgOu6drovE2Uo2t+HZWJ7z4vs4KhtZV8q2p9zLtEOMOpi6Q4AdEl3AJiNdAeA2Uh3AJjNk9J9wx9Grf5ibvTPy6t1VtWGmsnXD4YFg1+kztAKBw/Khkeq2v/mR3zn+gBc2vM+Z36ordUFunrF31BnTzPJ+t0K1fEvUqdbP6gz1GdccHM/3WHJ9QG4uud9R1y+p/KoVYWyYBx125KmWiF/b6u9VvPBFLo1R+tk1mS0TmtYfs3jx2tPP636ALN6udfu74M3BFu3zrYre5wrozVbgZRJr6PqLEOudYp8ndaxQ+vz0H6C+vdCt1WA1/da6b4cmbzKV6/OrTqt63hZJM6MZP34wHi+3X521ml1WK3fqtOdabeZe/h4tdZttJ9ufYDJvGK6dzOjdWC3zrarfCZaMqU21Akql3PJ11ktSPUU1f1D/cT1y2Nb/SdP2uohrh+vG8BFvVa6L5VH5a/yrbtat0c7yd+bH1YdsGHKmTqZddjTz7Z17rY6NHhoXgCTOTPd719VOyvv2nZd3p86QwEz1MOr1Rldn6PqjNYcPbY1BmBWz/ub+fKqWt25umt574brclmn1Uz38OohyWpH1emO3F9naH0OrFM9qrtu+X72dAVwOT6rDgBmI90BYDbSHQBmI90BYDbSHQBmI90BYDbSHQBm8/B0P+r906sB+SLxW5+HWhqqDwBnecan2bydKZ/KwfhkmnbH5FM5aKN7LACc4krpnn+tHI8J6lRfo4/WB4BzPe/f3Xem+/uPO9M9rrM/3e+FuFUAONyT0j2fc9VojG+Xh7TytVWnWqpbR34D8Jpe9Btgu9GbL5h5NhCfN55F5lkCADzTk/5mfrSt4KjRgslUru7ckO4AcLoz/6qu9eo2zstMmh6Vyq06mfoAcJaX+373VuSv7k0Gcxzte+rkKwDAk/msOgCYjXQHgNlIdwCYjXQHgNlIdwCYjXQHgNlIdwCYzZzf7x7XOaSfw+cFAEe50jfA3tLBHNQZytdWncPnBQAHusw3wN4SL8e7dbo9bKizpx8AeIRXTPd77fvXW/u7xR+R7t1TV+sE81oK2gOAjOd9A2wyt6o5F6RsnI7x4NZ5y9O1prCtTmYdAGCzV3ztfiueEJSRGad4a2dZs3vIhsHlXa15VadWLQgAeS+a7sH4DUGer58/aTydVrp3DwSA/V7r+903p3swJnM7X21bHekOwDOd+X736v5gfPfe6rDqE4jRaA+aTJYaPS8AbOaz6gBgNtIdAGYj3QFgNtIdAGYj3QFgNtIdAGYj3QFgNq/1WXW39vvCN79ffOf73W+Nt7wH++MiO+c1a533o4L6Q6UAPrMnpXvy6rwck7ndtTrvhjqtYRvayN/+bHVaI1d7htYc4DN76nfEDV2ah9Ii2LmnTqvno+aSnMJQzUxvmWNH12d/nXJkWWdo2QE+rSd9Eu3tiEQM6gTB0DrvaHp1jw100y7ZT1zzqHXO93PsvLoPYnXKq/0A3M79FpmW6vW6dR2vXuVHUyquU543ub9sI55Ct5/R9Qn6Sa5Dt5+geKZ+eYrq4ffiYQUg8Ix0jwOgpYyQWyPYbsV1Pz5v0EYwMnN7aFKZu5Lju+tzSDOj+/dPdvXwlVNeDQDgzcv9zXx1fDdN80EStxEMHuonWb97V3L8hn6G1mHD/g31W0W2LTXAZ3Zmuq+u3bcHpOnOOsf2E0fgM/uJx+9Z4W39JDsZbQzg03r2O+LKi3X1gp7fH1sddS+MVtjcT2vw5jp7+gnWYXSRu81kqmX6GeoK4JPzWXUAMBvpDgCzke4AMJs//vjjPwZJdwB4adIdAGYj3QFgNtIdAGbz2HQffd/zm/3v5w7Gb3jzdOYt3c/sBwBiz0j3oYaqhyx3Zmq2xo/WyfSTKXVgPwDQ9VrpPprcrZ2b0zQZ22Wde+0Vebd/6Q7AI8yc7vfGF4uN1gl6uC8kJ5Ls516oVgOA0lP/3b3bTTw+yNHyqDh3y7uqdeLBbzdujZfywSnyUwaADZ73N/OZ9CpjMh7T2lnGc6ZIUKd6e3WWTP1k/zev3QHYYfJ0T44frbNK3EekOwBs9rx/dw9enq725G+3bI7eZJ2g7Yf2AwAZD3/tfl9Ynbu6vzU+qFPVrZNcoEw/mWpH9QMAXT6rDgBmI90BYDbSHQBmI90BYDbSHQBmI90BYDbSHQBm84x03/CW7vjN5UPvVi/3eIs5AHN70qfZDPXU+siX0bnFdQQ8ALN6xW+A3Z/umTrSHYBZvVa6vznltfv6V/+CH4DLeq3vd3/TSuWyThnJ5b3V4iIcgImd+R1xLfHIQ+p0n0AIfgCuS7oDwGxe6/vd45Gte1taI0U7AHN7re93D349PvQ780yd7WsGAK/NZ9UBwGykOwDMRroDwGykOwDMRroDwGykOwDMRroDwGye+jnz3TeaJ9/vPvqW98z+0Tp7+t9z3lPqlPPKn31of3zqoKVktVvtk5E2lwJ4WU/9jrju1bM1YE+dzO3ROpnxR9V5RP8755VMweSjmawQ9DxacH8dgBd3vXRfXaC7lYdSLWh4QwoeUucR/e+cV3f97wvlsOSDNdR/3E/r7N15AVzUU//dvXv1bA143x/HRrfm8tggAIJjg+Yz/Q/VKfvs1qn2v6FOpr14T1A5+WBler4vJDtMnv1eqB4C8Jqel+6ZS2Trerq8NN/SV+Hguh/vD+q3Bt+LsInrx3XyfQ71v6ef8rFIrv+tEJTttrSqcM/9/1A9NtMVwEU9Kd03XDpbl+xqtaB+KxWCjImLbOh/tM5RfW6u020ss3/DYg7NazW75PjqUrT2tMYDvLhnpPu2i+PyqNUVNnN1DuoEh2wIpEz/o3WO6nNznW5Xmbs2LObQvPb//9AdDHBRZ6b76hp9Sydx93KcqZO/pm8buSdFXq3OseP31xn9/2GoGsAEXivdlzuD/ZlrcaZOZoGGBmfOe9E6t/FnFeWpW/szpeJTDE1hdcjoOgC8Pp9VBwCzke4AMBvpDgCzke4AMBvpDgCzke4AMBvpDgCzeXi6j74pufv+7CfXWR340H4ypbqDd9Z5tXkd9Xi97xwqAnBRz/sG2MwFujX+rDqrgg/tJ1Oqe95kED5znTOlHv14bagAcGnXSPfWmHjnhjpBhaHUSfZT3s4HUmtwpp/MXPY8Xt15ba4T97M6Y9lDsgLA1T0j3d8uqXvSojUm3rmhTjDsEf2sipdH5ecV99kaPDqvzFwy8xqtk+ynPHV3RvdC9xQAr++l/929enVu7SzvbZ03GLmq002Xnf0sT1Q93WidsqVWnVbxZJG4Tmteo3Xi+uVd1R5akwKY2JN+M19etWPB4Opdo+PjQ1Zj4uDZ038QTpvrVJd6aBGGHqnqId15JeuMtrTh8YrXDeCiXuvf3d8lU23z+NF+yvHx4cl+VolSHnXUvPKDtyVcdXE2PPRHPVjVQ7ZNDeCKzkz3VQas9rf2ZK7RrfHbImd/neSx3VKZ8+6J0m3r083RZKn9MxrqCmBiZ/67e3V/d/BQ5AT1hy70q6PuhUP62VMnc291ZNDMUD9BJ4fU6VZonb1sZrQawOX4rDoAmI10B4DZSHcAmI10B4DZSHcAmI10B4DZSHcAmM1Lf858666hIqtDht73nHmf9ND7p4NJ7exnaJ2PqhOMH63zflSyz+f0A3BRr/VJtMH4oetya/BozeSAoSB8RD971vmoOpnbo12NhvGx/QBc1zXSfTT28um1LU1XFcox1X7i9OoOGJpXpp/WvLbVGXrsNqxPxuZ+ACbzSdO9FSdx2aBU5sAgvZLx1p1X8tSjj0WmztBjN7o+G2TW6vZx5fecDuClPPXf3TOXzur4oEj16twavxxwa4TrUJ3bSFq0mi/7GZ1Xt9V8neW93XXOn3fP+mSKVA+8FVr7ASbzpL+ZH72qBtf9aqmgfiuKRrtq1cmnS5xewYBuP93xo3WOqn9I8cy9O0/aehwBLuqTpvuGrvYHVbmz209yXtua3HDIaP1Dimfu3dwJwJSeke7xBTefgnG1zPjVsd1SmfPmYyOe1/5+tnWSXKtktW39tMY/4nEf7Qrgip737+7luat3tcbfFzITa42/f7S5zlBX98Lh/QwtTqbO6Don93ebCdZnc52gPsCUfFYdAMxGugPAbKQ7AMxGugPAbKQ7AMxGugPAbKQ7AMzmeZ9Vtzrx6PuPj3p/9urAajPeDw3ApZ3zWXXVTywJuiyTOL7dVf20k+SxAPDinvENsHG6Z14uZ5I4n9BlV9IdgJmc/No9+cvw5Zid6V6tExx7L3RPAQDnOj/dqwNKQb6W+8tIjhNdfgMwkzPTvRq6VauR1cGjTxHi5wrBIfEpAOB0J6d7a8BKZvBo9B5VBwBezSv+zXz5KrmV7kNPEVaOqgMAr+Z5fzPfivDuK/tyfGZ/rDxqWx0AeEE+qw4AZiPdAWA20h0AZiPdAWA20h0AZiPdAWA20h0AZnPa97vH+1vy47vvX0++tf2Q99kn3/ffrbM6ZHM/y6OSfT66nwet893nGQCf0jmfVRfvbxmNiuCo5IW+VadbP9n5aJ3WsA11qiM3hN8h/Txond9/3LY+ANd15ve7j+ZQML51WS/viqsl6+xMnWSfcT+j5yrHtFYmX3zzvPKnyPeWbG+0H4ArmuS1e/6u9x9HL/1lYgV1kmW7KZhM08y5MiO7xyb76c5rqKttdVqHVKewNHQKgNd0+XSPr85BGg1d5Vt7ukXui2cAQeVMqbjO8t5uP5lJxXdtm1emn/3z6s7uBjC7y6d7cFc3cloDknVumwIjeYrq/uWP+1c1Hpnps9vPhjQ95P+W/P8q8f8PABc1bbp3iyfTqDvskFkklyhz3nw/8chMn91+NuTlKfMCmMwrpvv9q+T4uPKetGjVydTP97N/XqP9ZDr5zPMCuLpzvt+9tX91b7mnOr7UHZ8sFdTJNxOPHyqSqZMpNeu8lock6wNMyWfVAcBspDsAzEa6A8BspDsAzEa6A8BspDsAzEa6A8BsTvt+98PfVz36Pubgfd7dUveabf0cO37DIrSKb1tVAF7BOZ9VV8Zh3GVr/GidVcHWsd1SrfFHzWvb+NEw7laQ7gAXdeb3u5e3W45N97Kr8vZQ7L3/2O0nqLN/HYIK1fOOThOAqzjzc+Yz9y7HtBK03N8tVa1zS8feUM2gTnd8ZiKZJjPNxEfdC/lWAXiyk9M9nxNx7lZTs0yjVpouB1TvClItPnXQUjC+1X+8bsHOoKVbQ3wvAK/sFb8jLhhZTcFyf1ynTLvqj5lWH70/mMVQkepdQ+Or6wbAazot3TfnWeb2tppBqf3puG3/0Mij0l14A1zdK/7NfPnq8DnpXr0rWSGzf7ROPDJe1T3nle4AV3eN73dfHZLZH+u2lC/SqjzayWjb+fXM11nem+wfgBfks+oAYDbSHQBmI90BYDbSHQBmI90BYDbSHQBmI90BYDaX/373Vv1kwcP7GXrfOQA8wit+Vl0pHr8hR1fpe1Q/1WcMQ40BwH7nfL/70mgElmkaVKjeVR41mu5xP6uz5EsBwCGu8f3u8fihdH/f0zrqkHRvPYHoPh0BgP3O/wbYfM61xgc7V2laTeKgVFmkem95eHk6AHiaz/XaPZPW+U7Ko7pPJqrnBYBjfa50D+7anLjVCN9ZEwD2eMW/mY9fVQ+le6BVM1Mteax0B+AU53y/+y38c/fq/m6RoShdHbKhTmvwtn4A4EA+qw4AZiPdAWA20h0AZiPdAWA20h0AZiPdAWA20h0AZnPa97sv73r++8vjIkf1k+zkpercGp83EOyPmwla2lDn/vGDg4bmBfB5nPxJtMkLdHlZr1Yeyox4z/5+jprXM+sEw4aWqPuIb6vz/uOGeQF8Kmd+v3t8b3xySJ4AABlSSURBVEucXvcwtltn7PbQipnk7SvWCYZ1B2yus6HsaE2Az+C01+7vO/dc8VdFylLJPBhNr7ifYF5DdfJTyBw7WifZ9rF1YvkpLG0+HcB1veK3yLSU1+v3H+9FoAZX+VY/1TyI0yIef1SdsvnyruT4uM5okaPqlEXuvRS/1f5/AODNmekeX81bloOrodIaHO/ccEhwunxExf207nrQ/nJt49ujU+jWackv0b2QPAXATK79/e6rK3hZajSK8od0h+2p0733Qftb/W+Y11DN2LYlAvjMXjHd719VxwQJkbzQxxGbKbI5BZN18hUy47fl6CPmNVqnNXJbHYDP47Tvd39Tvas6uFUkrh+crnXSTFQ8s063SDx+c51gnZ9Z59bI7w11AD4Pn1UHALOR7gAwG+kOALOR7gAwG+kOALOR7gAwG+kOALM55/vdg/d5txz4/umyn1WpZIV4/M55HdXP6Po8us5qwM46G5pZlRqdF8AlnP8tMhnL8Znb+WrbWuqeNxkYQZ1D+hldn0fXWQ3YWWfnI57pE+Cizvl+99Er6bGp87h+4rPEJxqay2rAsevzuDrLPfvXJzl4Q88AV3el1+5vh7SOzdfc309wbNznUHrlT5qps23Nl7fj9c/0cDtofUYHj/Z8W0x5OXeAq3iJb4DNNBqP716a42t9PDLoNqicT4vueYNW435apUbndWusf1An2Ll/fVpNtuoEMw3qA1zXK35HXDCmeiEevTTHFfLVWnWCLAmKt3oIAimzs3tXZnC8/vlSR63PhsHdu7qtVqsBvKaLpXs5fsOVN86JZMHusOqAZOp0+xmKuky3+baHFjw5323jR4vHd234HwngZZ3/7+6te++NCB9KwarRfuIKe9LiqHll1jOucGw/mZHXnRfA6zvt+92rO1d3VXe2iuTTYrSfoTqj1Vojj+onXyRZZ7RU90T5ljJ9DtUZ6gTgQnxWHQDMRroDwGykOwDMRroDwGykOwDMRroDwGykOwDM5pzvd3/fue2t2NV783N+nfdPj543GO992wC8O+2TaIdyaDm4FagbSm2rEPQT95lsZsP40fMCMLcZvt89Xy2TjqOG0n21s3ve5HjpDsDS+Z8zn7GM8D3V5k736vrcC5lJAXBpM3y/e7f+KvnKOsn9rXszUxvqZ+f47mICMLfzX7tnAqmMt1a1ZJ3gqNGArI7fUHyozq0xl3J97oVwNgDM4GLp3q22p85otWD8WekeHwLAJ/GK6d56AZqpFssk4qs928iMl+4ALH2u73cPzjtUJFMnU+QR582fGoBZ+aw6AJiNdAeA2Uh3AJiNdAeA2Uh3AJiNdAeA2Uh3AJjNOd/vXr5Pvfsu7c1val8dNXTS4Lw7+9lWBwAyzv+suuqAlTKe41m16h913p39dOsDwB4v8f3up6T7aGPSHYCrOOe1+0pyQJnQSeWxG552ZBK620Cwv3rqVp8AEDg/3ZPRVc25MgLLUtUEvbdfyq/q5IsH/QRF4voAsMHJ6Z6MtDImk9ML0rd69lbxTLRva6m1s/osAQAyzkz3fGgtR247arknKJVvdXPiHvhEAQCqXjHdy1erx6Z7t4GhOpki255SAMA2p32/+20k3W8ff1OdnFvwKjlfqtvMaJ1WqW4FAEjyWXUAMBvpDgCzke4AMBvpDgCzke4AMBvpDgCzke4AMJtzvt/9tvV7zQ+pc9T76av9xPuDZvb0E7z/fvR9+QBM4Pzvd8+nziF1qsOO6mdPhcztnZ0IeIBP4vzvd8+n14Y6yXjbVqfVz7YQTSZ00E987ObGALicM1+73we/r31DnaEUzNfJVIvnkj/qkHS/LyzvKvcDMIHTvkVmQ64M1ammV5BnQ3WCfqr7yyJlnWBqm+e1HBA0DMBkTv5391awVW2o00q71u1knWBnsD82VC04RTmv1ezKu7Y1DMDLmvyv6kbTPVkn7vwF031PYwBcziume+vV5P5nCZvTvVsts/9x/SSPle4An8Rp3+9e3bm6qzo4X6eqNX6oTqufoM+H9pOskywFwNX5rDoAmI10B4DZSHcAmI10B4DZSHcAmI10B4DZSHcAmM01vt+9fB959S3mG+oc1U+3z27BZJ8PnVdZ8/A68bDR+tXBex7H8qgNUwY43St+Vl2pmjT76xzVT7fP0WobQu6Qea0OrB67p048bLR+deSG9oJjk/0DvJorfb97+ePOOvl+ujEwNGw1IF6f4MChfvIpVXZ1VJ14ZFC/Ot/D1y15FoDXd43X7ivvhywvvqMpUu4P6sQxMHq67rCdKbXan1+fW7G2x9bJyKx/a+fougX3tvq/F4LTAZzlJb7ffc/Vv1qkvAQvr9TVk2b2Z+pU+2z1U51Rvs/N82r1U/Z8bJ3W+PxSlGffs26tU7duA1zFaenevSszfhUnm0t164xOYaiZePCefkbXp4zA+8e03lknc1T+rnJnde6ZU6z2B/1vmBfA810p3TdczZPVNqdCt6vRTpL3Jvt52vok62wellyEbY/jhlMDvLgz0z3ef8jVPKiwJ73i8fvz76x5jdYcrTN6rtHKR9XJ3wvwms7/fveyp9Zdwc7RS3krGPbXafXZLdJanyfPq3XUUXW6wzKnOHDdbuHjtW3WAKfzWXUAMBvpDgCzke4AMBvpDgCzke4AMBvpDgCzke4AMJuHp3vmfdgb3t+8+X3YmX5SK/fxwM11htZhT58AfB7P+DSbtzO1bpc/llrjg5rdOsneMgU319mzDgIegJbz0z3zSjSTgvmdmX7yxffU6a5Dsn8AWHrev7tXk68MyIxXSPfVFLbV6a5DPt3vhepRAHwGT0r3INXKe2OtCGztLO/NjI/rLMfE45N1WmXz/QPAu3O+Iy4Iy1gwsnrXUeO7UV2d4FCd6lH5/uN+APhUnvQ386uzrhIomUbxsGem+1F1uuswel4AuL3CX9W1fsxE5uhThM1Rmqw5Wideh3i8dAeg5fzvd2+lYybdV3UyEx496Wi10TrBOiTPCAArPqsOAGYj3QFgNtIdAGYj3QFgNtIdAGYj3QFgNtIdAGZz2ve7v9n2vvA9471fHIDpnfNZda09LXGd/PjROgBwRWd+Eu2B6b7aKd0B+MzO+X731p6MfLrfwy+gax0y9LQDAF7QOd/vHuyMtZ4ilKkc57T8BmBi53y/e7y/JRhffSF++/giPq7jtTsA0zjn+93fDIVoPLiV7vFdADClV/yb+fLVc1ynVSF/GwBmcs73u8e/Bm+le2t8VXXwhjoAcDk+qw4AZiPdAWA20h0AZiPdAWA20h0AZiPdAWA20h0AZnPa97uPvuk8GH9InaP62fx++uCt+Uf187Q690L13qP62bzOcZ/P6QfgEc78Btjydkswfuhi+uh+Nve2SoVH9HNWnfxd2/oZqhms8yn9ADzItdO9e2xw2R2qubnOqlRQvDWXo9ZnT509/Ywem+nnqHUe7Sff2+ayAIc48/vd4/0tQ1fn1YDllbd1RQ6CId9PGSStOvF5M3NMjs/U6a7DUJ1tx2ZqHrXOT+jnXth2OoAhZ36/e7C/ZTU+uG62rqqZ8Zk6QT9vN261AFjVKQdUTx00E/eTXLdWn9UimTqtDpP7u/Nanqi6jNV+ylLb+mntqfYDcIprf79766rdOmR1uS+PLS/c+eK3Ihrjhm+JVGudumr/OnfXYahaOb51O19hueesdW7NpdpP97wAj3Da97vvuZhWd2Yu2a3xo3XiYUGpYNY7F+qQde6uw2jBoOaeeZ24ztXx3X4AnuwV/6puda1MHpu5pD6zTrLUaM3Nx85aJ1lqtObT+gF4hMt/v3urSEv3pJk6yX7yl/h4iTb3E/SZ72RDP0fVCfofnVfr7I+YV74fgAfxWXUAMBvpDgCzke4AMBvpDgCzke4AMBvpDgCzke4AMJvLfL/76sBy59Dh297i3KozetL3o6o79/cztKTL8Rv62XDSo/rv1hlqfuc6ALyUV/ysukBwQc8fPnRgdcxo/63zbkiObj9DZauptq2Z5LFH9f+Ix2WoAYBXdk66L22IolXNoEIQG/GB+d42jHn/cTRFMmtYnVeQhUOJ2F3P5/T/oMdl6FiAV3aZ73cPEjGo0EqFMtgyh28e0zpk9NjuGrbmFexZ3rVnQQ5J02T/Rz0u3X5ad7X6BHgRZ36/e/76GCdQXHx5luWNWyNUyvGtPsv9rTrxXPJ14vHlvLrrkOynVaf1EDyn/2ont5HHJe6nVR/g9Z35/e6Ze5dj4mtxpnj14t49b3yWoQDItzrUT3decXpVT71z5xP6j88+9Ljk63TXDeAVnPb97u/2X4WDCq1Lc/LUx6ZIPDJTp9VPd175JYr3D1V+XP/HPi7H1gF4Ba/4N/Ora/3KnoAJQqI7Pt9/8uwb6iR7GAqkPfM6q/+jHpdjH1+A13HO97vfil/GLrX2l0cF9Vv2jM/s75ZK1t/Tz2hLy0P2LOZR6/nMx+WoOgAvxWfVAcBspDsAzEa6A8BspDsAzEa6A8BspDsAzEa6A8BsTvt+93ej78+uHp58a3L8/uxtb7ZuHbXhLdetU2zup9tkXCo4xSF1ukW645NFDuwH4BJO/gbYDRf6YE+3VDBg6PrePe9oCgY7M3Va/YyGVuu8e9Y5WXOoTr7Csf0AXMWZ6X5fiLtsjSzrxwHQOtfolT0uOzqveP+GOu8/do8NJhLfzpfN3M6o9tCqkLxrTz8Ar+y073fPJ1CrQlkkGNCqEO9PqoZEpmbcz+j6lGW7x1bXpzy2u87J/lu3hyYV7Bm9K+jnXsi3CnC6c77ffdtVPri+t4JkdXVuXa+T+6uttuYSNxP3c2vk6LZ+uvVbh3TXOegned7MvKp1bo3/c0brtAYDXNo53+8eX81b4jrBgG611u3Rlkbn1e1hNHWS8437L8/bXedW2Vb/Q5NqHTI62eCuVvHk4wjwaq70/e7BJTge0K0WF9nWeaZOpoeH9rPaGfeQb6k7OD+p4JDkg5u5a0M/AK/s5L+Zr+5fZUl3ZDAgqJC5HYtHZuo8up/ROskeNq9zvpPXrANwFad9v/ub6l3Bnu5d3Qm3Bg8VWR4ydJbn9zNaJ9PPIeucaaZV5154Wj8Al+Cz6gBgNtIdAGYj3QFgNtIdAGYj3QFgNtIdAGYj3QFgNud8v/uB71deDcjMOajjfc8ATOCcz6ob/fyQ7rGjzxJG7wKAC7lGui8FHzfWrRm8ZM8/PwCAF3fO97sfmO7vP+5J9+Dee2FT1wDwPGd+v/toXpbj498NlGeJzyu8AZjDOd/vvjSaqZkUzx/b7WSoPgC8git9v3s8PlNnQ7oDwOWc/1d1rZS9J34DXx4Vz1a6A/AZnPb97sHvuqv7g/Hde7sjgz4B4HJ8Vh0AzEa6A8BspDsAzEa6A8BspDsAzEa6A8BspDsAzOac73d/M/Tm8uT71ONqo+O7fY6+Mz4YP9rMg/oZfdN/a/xZdVYHVuuMtpSpD/BSzvmsuvLHWKvOaM0NPRx4fe+WGmqmFYR7+onr5/s5q86q4Ob/T7pjko8XwFnO/yTajGSdbtnu+GTB+0K+/w3Vgn7K2/v7Oeox6u5Pzmu0znJnd62S/bQ6GV0fgGe6xve7Ly+mwbH7A2nDVX7P6ZY7M+kVr+Gx0z9kdq39Q/PK17k11nO1c8/j3nq87oXq4QDPcZnvd++OL6/m8VkyV+ehCt3ztsbn+4lb2t9Pq36mTlAqbik5r0ydsuDqdmtYtU5rpsHqAbyIc77fffQqWV52WwOSWuOHrub7T1pGS/IUD12EDaWCQ4ZaHW2p+niV61n9sVundbv6eLX2A5zinO93b109W+LxoxfTYHzyKn/4eVv3tg4ZGryhnw35dEiroy0lx9+/ah019Lh3Tw1wuvP/qq51qc1fbQ9MtWDko8+7ratH9LN/fTLpmDnvtjrdY7ulMucd7QfgmWb4fvejUi0YHDSfqdYdv6HUUP18P8kK3c7zzcTnHa3TOmpofbrn3dYVwNP4rDoAmI10B4DZSHcAmI10B4DZSHcAmI10B4DZSHcAmM053+9evt966C3I1Z2j74duFTnk/dC33LvqM+fdMLVyvLdlA3wq539WXfljVSu0WjWHSu1J0KCxbZPaUCcePzo7AK7uGumeeV3bjf9b+wX3nvxrVcv3E1fO91aOH60AwBzO+X73lZ3p/nZXJk1bOw9M96F+MmuS7C0YH3Qi/gGmdM73uy9loiXIocz+bqbGI7v3Vit3S3XP27rdqhPP7gbAp3HO97u/SwZPnHa3WtAG9eOTjmZhJn0zxYfqVI9tjQ8WIVkfgGs55/vd3+RDpUy++HZ8ivi8o1HXGj966qE6Q/0Ib4DP5py/qmvtWe5vvfocSvequJNMncz4Z9aJx0t3gM/mtO93v42k+3Jncn9V0M9Qne74fLWj6lTHB/MFYGI+qw4AZiPdAWA20h0AZiPdAWA20h0AZiPdAWA20h0AZnPO97sH+7uCUkNFqmVHS8V1khW66+N96gAMOf8bYEfTdDX+wOcHozXjOpkiyTUR8AAMuVK6l69lR2Ov9Wq4rJmJ/w3pHsR2fFu6A5B3zve7LxMrGV3V8dtiL0jlTGx36wTzqqZ7MK+yn3shP3EAPonTvt99KJ9aid7KuTICy3ur9VtBm6wTzKtVJ65c9gMAXed8v/syvTLR1UrrMiYzc46jN244UyeYV5Di5VyCaa4GAMDSOd/vvi2V42MPSfd4QLJO/pB4LpuXCIBP7hX/qi5+Vfq4dA8GbKiTKZKci3QHYMhp3+9e3bm6q2y3PCqoEx8e9JNM5dF5dUsFp8iUAoA3PqsOAGYj3QFgNtIdAGYj3QFgNtIdAGYj3QFgNtIdAGZzme93P6rO6sBj+ynfB9+tFo8cmtRD13m0n4s+XkMtAbysV/ysutJRdVYFH9pPplR83g0zGqr/uH4u+ngBTOMzpvt9IT5Xvlr12G5AxnMZndGGMU/oZ2idg517Hq94XvGxAFd05ve7l7dblhf3PVf55bCddTLjy7tWe+J1yHcymnBxP6312dbP0DoHJ93zeLXm1X3sluJTALyUl/h+98ylMx7cSqnVUfGVvazfqtMaP9RSdx2CDqvzavUTFI/7iWcUr093Xpl+yoJxnWQ/rfE3gFmc8/3u75JX1dXlvnqVz8w2uPpvqBaMbxUZ2j86r/2nOGqdM4fk+9n/eMXzSp46PgXASznn+93fJa+bQXptvvImr/Ib6oxGWmt/vpNgfYZOEdfZsNSjS3HU0gVjjnrcAV7ZOX9V19qz3J9JncxVu2VPnWNTcH/eHLU+j57Xqz1ee/oBeGXnf7972VP1rrhIUK2qPGS0SDB+Wyet4slqrcGHzGtPP8k+R7s6ZF6b+wF4cT6rDgBmI90BYDbSHQBmI90BYDbSHQBmI90BYDbSHQBm8xLf777hrc/VOvnD47diD3VSHb+hmWW16s58qW59AOZ2/jfAlj8GVhEV1AwO39lDd/zodMof9zRz4BwBuKhX+QbYTOqUL0C76R7E2+gzg6Bs0GG+n9tIum+bl3QH+CROTvduHJaHx8ka73x0unfvTR44mu4b7roXgtMBcC3P+wbYaspuCLNMit/a6ZXfWS1yL56UZJoJ+gnmWB0Z16lW7t4FwGTOfO2+Csugy1bKlpWrB3b3l71Fa9Ybv7+f7l35nXGT1fUE4OpOTvfyrq58tAf3vlS6b5jC/pMCMLFX/Jv5+NVksmYgjsaHpvsl+gHg6l7x/e5Buq8OuRe6E26NHCrSGr+hn1v46nx0UsF6ZjoBYA4+qw4AZiPdAWA20h0AZnNausf/Elz9d+h4Jq1/p4+P2lw5vmu0mc3NA0DpGX9VVz3xaLqPHhL8VVr5N2jxn8LtSff7x7+5G6oj3QHY5kmfVfd+Y0+gZtI9qNmtFkT1e8HVjeq5WonefSqwOl1+LgCw9NR0X8pE9S39hCAf1a0xwfhueMcDlnOJC3YnBQAZz/539ziny/3517vxgODs8bOHauXM+GX/5X+rfXYnBQAZL/1Xda3kK1Mwme4bxM82VjvjJwfdJwrlnrIgAHQ945Noq+EXp9dQWm9I96E2qgkdR293ykPdZgYAwLvT/t099h6B3RjuDgtiu3reYGdZKh4f3I5PWs6ueiAAVD073ZMvZIMwrt4OArIq/ySgvOteez7ROm/wzCDuU64DsNkJ6b7qoMz+clhcoVs2Mz5TvOyt+2yg9d/q+G59AMh4xdfu5SGtu4Kd3XRvCYq/p29wYNlteVc3v1vVACDjtV67t3ZWX9fGRZK5mBk2+lQjeWxrfPdpR/BEJK75oPEAvJrnpXvwwrdsK7+zdVf8PGDoCceq/+RZMidajQ/O2x0ceNz46qPpaQHA6Z6U7u9X/GQMt4bFmd0tW61Tvb3aGQT8qvgq3rpPI1pxmHxacC7pDvCazvzNfDUsg53l7fKoOG+CJxnBgOoTgu4pgpHB+NbO14zMeGoAnOWET6INfix3VtPikPB7zWRq9XB6Y1WvuYYAnPZJtADAg0h3AJiNdAeA2Uh3AJiNdAeA2Uh3AJiNdAeA2Uh3AJiNdAeA2Uh3AJiNdAeA2Uh3AJiNdAeA2Uh3AJiNdAeA2Uh3AJiNdAeA2Uh3AJiNdAeA2Uh3AJiNdAeA2Uh3AJiNdAeA2Uh3AJiNdAeA2Uh3AJiNdAeA2Uh3AJjNgen+/wGVexlGXAPAgAAAAABJRU5ErkJggg==" alt="" />
运行结果2:
aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAqAAAAJ5CAIAAAD+bxV1AAAgAElEQVR4nO29Pa4sR9Kmmcu5myCocAGUKFEoUBqUWlRaoVJaYYABBx8wQCul9BY+PbUGGtPSSKPNEnoHHOHwJOOEu79uZu4R/pPPg8BF3ghzs9ctIv3NzJM/j//8b//BxsbGxsbG5t3++48/zrCV5D2GN4iNjY2NjW3Fbbi1Y/BsbGxsbGz9t+HWjsGzsbGxsbH134ZbOwbPxsbGxsZW2b4VEEOGWzsGz8bGxsbGFtkweDY2NjY2tlU38dz9IoP/448//vjjD70Hg2djY2NjY2va7jf4k6O3uHvE4P+P//P/cm3DzxAbm3f710/fvn3/y7/dA//56/ffvv30j+H62WobZ4rNtGVd/GqDf/l6o7sHDf7/+X//v9L2v/2X34//YvBsF2z/+PnwUPrn3zJHTzv/9dO3b99+/Ncx7Pdffvj27Ye///MQ9lr0//nr93MafGZqk2//+ul1or779fekV598nojbJojBs5m2UQbf/tw9bvD/4//+n8YNg2fru/3779+dTP1fP52cI/f8+7cfTwbzkedL2O+//NDqLpfbRvSlhep2ibP+++/fvXL+++/fHU/Bv346PLo6PNi6bIJ3nym2PbZ3fAb/MIPBs/XcEp/Ob7//8sM57B8/f3m+/s9fv//2899/+eH4tN6YXG3X20Zmal226586y8dPf/n6VRO8/UyxjdsCn2oTqUo7t/0bPAbPNmL756/fn15UPx/9fPKXRp5edf/Hz9+++/X3L652fO54uP2nE/z5jP9b8lL/bz/+tX789MvZNn7/5YfcXxNOz1Mz//0zyV9/jPgcm23COSx9HnzYcw4+TO34avlX8Ym8v0Z9/8u/vyT52p+vragbfPEsH/4uczxNdiX6TCVST7WSl47+8fO3Q4ZCr9iGbGdj/ySWyrjztHV8Zf7Wd9G/DP6j6tHOT//F4Nl6bpWX0L9a+G8/ntb3f//9u7/2/PbjR+ThheIvT/HPBv/1j8R/Leu//Xi27fLRL3/1//JqwYd1vf77z1+//xj1VdLfS1PLhZ1fjXg9lCnkTJ/Bf8nwpbcf0/wzycvYjo9IMsYpnzGf3g+RnLuPTh4fefz6m1OJPlPnWuWJf33YVx3CtvoWfqzQ+BJ9r60kr2LwLy//uHH8F4Nnu2TzvXibONbh8cHrKfK///5d9pXh81J+WK8PDxROL/v/x9d1Pz16HvunvN9+/Pbtux++PxrVd7/+Lh7QfJ1aPuzr8+CXZRpz/vUgI9P8zOsNBz/+evSvd9IVX3r5MOYvjpgRkzVjsxJ9ps59K038lefLg8XKELY33YZbex+DPz2DP+3H4Nm6bc518/BC98f28ryDf3zm/Lpkl5+rHU06Y5aH4KyVHp7qfXmQ8fE68+sV5q8vHqRPB79OLR92yvNpb6WcmQcNKaeHR0mvTnW/bOm7I/8z+1bHdILlV26sSvSZOl9jxYkfAg7XYXUI21tuw629/zP41PgxeLZ+W+Y5sdqSBwR/GsDvx/fW/WlsZau4yuA/7efz+d+nqi9vL/9vB/84v+H/62OdNOzLKwG1YNOrAofm+A0+GfjnQ418laPm2w1eeXPB4LFzttM23NqbDD77fP3o9x83MHi2jlvm4+xqS96u9duP37599/NP351f1/3px9Pr+SaDzzzgOP7dV79E/+lhv70ebXw4/ce7/5K5nP6cX3on2pewP2OKjvsl+PSquHos1cXg//XTN/mZheMEi2LMSvSZ+o/Tfv1GzqSlzsedbO+xDbf2VoO3gMGzdd0+nvYdjeGfv37/8d/Mm5sSs/nzndiJ65/NxmbwZ5c6vXXr/KJ0zqR//unHL/Hff/fD4Sn4z1/+iJ58jv/z6Wkx7Lcfv33/48/ff3lqXgg+u9RZ/O+//HD0Zqut/vVo7GvCuikez13aSe8fC+SZ+mL2lYnnrgoxhO1tt+HWjsGzLbl9/ViXfvfy+a12Hyt7+ua78ofKlMG/En7+2TV54ff40azkCWvGGL7aXvlr4L5MrRz28YDmy2sexeBPqS8BX/qc/xTfqVefo778meDFQUb+79YZ8aeHR3/ifqihz1T2FJ8nfn7J4WMKXz0+7RUb25wb30XPtsOWvNVun80wtbW/zmXjc8fGNnbj1+TYttg2/sxSdWqrz311/Wxss24YPBvb2hvPgNnY2LIbBs/GtupW+nw5Gxsb239i8GxsbGxsbFtuGDwbGxsbG9uGGwbPxsbGxsa24YbBs7GxsbGxbbidDf6//u+/sbGxsbGxsa2yOQze/gV2Fp7Pp3FnIKZ9SIDnV4xDvCX8utbjTaYJAGDkjz/++F9O5jL4jz1XeLwxp8ASb0xuFBZ+AHQR3v401uqbEABgadY2+ON/Gz1eW5HFmQIGUzX4NOxZe0CTHprE+frKaD9fAAB7s4zBp0t2wMnsa313t36YPemUMN2jy72Jwd+ZHABgRZYx+A+eX5/UZl1frPVjDd475GTw2rlPRy0PIMKkD0Qs+RtLW3pVzXDPaQUAmIGVDL6LQ9idwGuNgUcP4sbjqyE9DQ9oSgL6WlTW3Uv/bZFhTPvwnC+vx8ceEwAAzMAdBn8yoZbbj69emC7l2gZ0gE6S7iz5StZmSjtPRy2CS1Pw7g+QFVmahas/pULVyIfzrYXZVGkJS10AgJkpGfzf/va3ns/gS8ulfX/1xrPm39WAY+nScJ3ckj8bfLIWndOoxBhvR1jjo+aI3v5krwe7Kl1IXG/G5AAA85M1+L990sHgn9fwcBr8M+egpTBRVA/UyR+JkWRHZY/qVmRL2IcYEeUeX1uXHZvONFAlm9Y7TXsTWtoFADCW1OD/9pVZnsEfD2Vjns0Gr01IL/RVAzvO5WRLx4A0LM2prcul3GVgpdNxOgtaQ7WNpeH6ShAV7VVaIgEAZuNk8EdfL3n8sL/Bn/akfvkwr/V6T8AwLGHpEKH5kXtynI49BVtmmi1hpHQ6xPl6mPsjxGTr6pz2VA/ZPVd/AADmIWvwpf/Gn8G38zzw2nO80WjwpVppXZ3f4gelKWTDRHB1XleY06kV+r+pDJfvuo5azpfen1V+RQ8BAG4gNfj0FfspDP6RM7zjuvwsGLxwFF0olqf635LbpV4iIi3ltJJSUQvpLIStGvsj2muxbctO12QtdQEAZmalz8F/kFqC19Vih+wukv2vxfxOYSXzs8z3Cs8L4PX7XlV6ZQYAWJd9DP747ymgmkrvTzNXhxuf+XmPlpSkAQJRsS/t/YkVqnYJAOAdWN7gjybhcvdXmMW57e7uImD/9nkFKnZk7CMJ3B0AYDGDD3teYMW/1CRcyd/TwN5hjgAA17G8wdtfj/UahjFn7MVwl2Bx42bC843V6psQAOCt+OOPP/6nh7kM/vjfRo/X1mVxMrsheXM+kwcxM5hfXw3t/QcAgCPLGHy6xKcLfXXpd3mwT1/bX8f12OxMhxvepXVxcQCARpYx+A+eX1+jzrq+8IbhBm93d/Hk9dn7qfypacZHD42lvY9psjHXPQ4DAFidlQy+i6PYnSNrri3ysg9KdP6j5ufXBzfGolWy7l76b6rNVciS9uHpv9fjY48JAABW5A6DP66qjbcfX30uXfq1begAnSTdWfIhbUslASKy1AGRzUiqMG1+tuH2+Z7SViNLk6pmTneeGlWtCwCwEzc9gy8tr/b91RvPmn9XA46lS8N1cmP+6u1qmL2cVlKyxkfNEV0CSufXrkoXEtePMTkAwH5cbvDPa3g4Df5ZttI0TBTVA3VyrcSiPNWpa1WVpBlO7S1N3DVfUSWb1tv/6tkJRAIArM4yz+CPh7Ix2vNcVqotLTDWokR0IG1FabIuAyu199RV3Y1qW0rD9ZkVFe1VWiIBAFZnpb/Bn/ac/KDkedmdek/AYCxhOrhaNO1DNt5lYKX2iv5rVUYx2bo6pz3VI5mFRRIAwGYs8y7654HXnuONRoMv1Urr6vx2g68atg7oZVSnqen/pqVdvus6aum/3p9V3qtvAACTs4zBPxILPy39z4LBCwfShWJ57Db8EmzxyGzaXgaWNXXhkZb/6klVbduy0zVZS10AgJ1YyeA/SC3kZE7ZYJHHeMjuOpYqLp2lKr0M3k54vo1VemUGAHgf9jH41POqluBy36q3HfeLZ4rep616XnfaXmy+7YVK/QcAAMHyBn80lYDziefH3j2xWqWcabD3cUZfxj6SwN0BALwsZvDhF29jfuwd0pgWGztCNwAAWlje4O2v33oNw5hTYE8rRnnzX0pgvi21+iYEAHgr1jb459fXtL3DT4fseJMLzVV3bCx3HX0FtPcfAACOLGPw6RKfLvTVpd/uDQEXCRi8ZeybGPydyQEA3oFlDP6D17r/8vjU9QNm2RJpHKKfho41+JMe49PlRgHVdlkyXPc4DABgdVYy+C6OYncObclhecfHKJZCxrAwWXcv/Tc7EXshS9qHp//ePnTsGwDA5Kz0XfTPrw6dXfq1begAnSTdWfIhbUvG5PeQKkybn224fb6ntNXIh7NFpSaf9lvqAgDsxDK/Jle98az5dzXgWLo0XCc35k/DhEVZ0BWFklLdR80R7fPNFhKyA/0v5RezAwDYHn4PPhMmiuqBOvkrII0xJu9LScmpn9nq7fMVab39r56dQCQAwOos8wz+eCgb82w2eG1aRg+uhp2UVG3MZUguAyuVO3VVd8M132ppkVMUss/a1R8AgKVZ6W/wpz0nPzjtPA1x7QkYTDUslW0XVkJUMVJqr+h/dQoWMdm6Oqc91SOZhUUSAMBmLPMu+tTYnl0NvlRLG2qareofOthuP72M6jQ1/d+0tMt3XUct/df7MXgAeGeWMfhHYuGnpb9k8MKBdKFYHv3fx8UGHzOwrKkLj7T8Vxt/1bYtO12TtdQFANiJlQz+g9RChGV6XVwcsruOPWASg7cTmG+XKr0yAwC8D/sY/PHfU0A1ld6fZq4Ozz5TzCr0PrMsibkB73x7FRo4ZQCAdVne4I+m4nL3V5jFuVueaotRsbRTufs9tXB3AAAv6xk8AAAAVFnS4Fd/Pjeb/lF61q3rzbB6PACsyHoGv/raNJv+dV12bN3ZPBiPB4ATixn86qvSFfpb3tq2usuOrTubB+PxAHDkPoO/4v3V6VF7lVJk9h1elz7tex7I7tQCuhu8KFoV01I3eyjtQ0t11/VTrTibAWPwAHDk1u+ib9TqWp2rqYS3NSYXRXXm0u2LcOnpKEm7e9bgu2iwXD/eczGbB+PxAPDi1l+Ta9TqMgYdWTISvZQ3TmFpgzd2xiJb1C2dl9J/XVSvn1JyPfdeGpaIB4CF2OEZfCB5YCmPFToN1zntTvmUtOv5OBTTE6trqWIJCNTNztdYNHDhLRcfvsAAYCzbGrx2vsBS/sgZnmvh0/pPSW5YUi16tMh0v0WwscP6aK/+pznTo1qSLrpZPAAsxLYGX01VXe67FDoND0hqr+vS86p18jajEVp0xjrc3gQx3xMuVe0aJo+v9gcA5mQHgw/kL8XfbzDtpcPCqh2w3NaH7HX18Kuvn3D1GQz4zngAWIjBBu99TtDL57xLeReDeXhehLC7Zou2dGDA4LvU1Zmv7n9axTLf2dwXdweAI7e+i75kYy5j1kerqUp6hM5e7vKovUospHap7tVTOlntevRkS6Ubi2brZgWU9tizbRkPAGux2DfZPdZflWbTP0rP6nVnc1/cHQBOrGfwj/XXptn0r+6199edzX1xdwBIWdLgAQAAQIPBAwAAbAgGvyHv9gLsrvOdZ178yQBgRTD43Xi3tXLX+c42LzweYDkw+K14t1Vy5vm2fLRvznnh8QBrcYfBVz9PXMI15BT5zBFI20vPSVU4baCormuvnm2mMb6lri5RFWBJ4tLpSlsNK42164xVTCMt+Y3J74kHAM1NX3TzUcy7ALUEn/bo/96gR2doMYNjkpgYS3VvA0v5w9dDtoRRgDHMrrPL+RKSsjt1356fGEuIGekL1ZL/tngAEExq8N7I6hLcuEZ319NSQmSwpxXnJXso3WlvuOW2PpRFBHjPl0unt4QX7/l6FK46cR716RNT80756ngAENz6N3jjmhhYOqtDWtboLnosSRo9o2oMpf0Ww3A5hMjvrSsoxYTbaNdZ2v+U2GWUah1PQSrD3k+tRxz1NvaK+HBjAd6N+wzeflfMRuoVM7ZgHfeL/F30WJYkox4xzVLObAYx2RKvKnqILu2q653vI3S+sqOqSqoKY+h5ZZtZul2aslCuJ+Wd79XxACCY8ediA+tmbMEyFuqix7K8NhpGNWc2v9hZMozsKO+kjHUFjafVOKT9+vGi2yXOS9q6Uj+9J0truzlezBcAjtz3LnqXLO+QwILlKtGuJ12UG0tki2olxrrZIafFtN0zAi1KM4hDvU5u4NIKaDgN1NmMksQQ45Vg1DYwHgAEg99kd7KN9JBxGu3uEi5hDLb0waWnVFcoaalrcYjqqEDdan5vaRFm748lecscvefRW9F7fZZUVatcGg8Amql/D96+jOr8gbRX6HGJjCHWfW/zdR7LqFKkt64uURVQzVA9X4G0jbjOo+VoNuwYLPqgVXln0TEeADR8k91uvNsquet8Z5sX7g6wHBj8hrzbWrnrfOeZF+4OsCIYPAAAwIZg8AAAABuypMHzgt7erH5+2/XzkjgAtLOewbM27c3q57eXfjweABpZzOBZlean5VNkq5/fvvrxeABoYerfg08pfTy3lD9W1z4kmz88U+PA0nyfX2nRU81fHesqdxzrytzl/BrnZcxcKieKlkoH5nVpPACsxaQ/F5tFrJ7Z/LFy9lEist11LGH2ubv0ZIM7nkdRt6qq1/m19DCQuVQuXCtwFV0aDwALMePPxZbotYDafVGLsRiScX+LV5VunxLqPa/bFtmN57GEyPk8YNQg+uw6NXZcfTPW8uq5Oh4AFuIdDf5RWOhd8izBwmO8qar5X7eFh5VKe41H50mxT0eXc+kUfS6NDZ+I1/BSzoB+kfPm+PAJBYCx3PpzsY1LgzaAU4nSkpSuVnrd18F6XtXS2TBd93Q0rVWdi+5DdV5ivo1Uywn96ZDT0VKe0xCRpDrrUkA2gzGzt9VXxwPAQiz/DL6U3Ligl4ZYxIj8Yn9JjLGu1vDa4ypdmktHqRZED09UdaY7S3nEkI76jwJEjDGnV0NjfLVvADAn72jwxkNVMS6D0ftjnUk1CEl6z+t2e3PCZ7k6qqTN21LXqbFTzRmo69VzdTwALMS8vwefxb5kWxZWY6pqmK5+T93TcP3fxvw6W2Dux7GN2oxVuuTJZg7UKtUNXEKXxgPAWgz+HHxpf4nSOqiTBxY+y5BS/rBPdKmbHvLqEUnCLbWXtquKiemVp5TcUtFY16vn6ngAWIvFvsnuwaq0O6uf3176cXcAaGQ9g3+wNu3O6uf3olcCBsYDwIosafAAAACgweABAAA2BIPvAC949mVUP3lpHQB2AoNvhTW3L+u6eywPHg8AF4HBN8Fq25fV3T2WDY8HgCuY7pvsnjmy+y3Ti33+2E42Qyl/uK5xiLeuS0npvIj8AUoZ0vwlMX3rHmtlSwey3R8PAO/JfQZvXIizi2m630J2SOpMrpynVLqo5baliiU4VteuxHJeruhnKW1jLUvdYyHveQxcq5fGA8AbcvevyVUXJouRWCjFVxdol+cF8rvqxmzMZUjGEpbzcnU/XWkb6x6TBDR4z9rV8QDwhtz3VbWPkF2Fx1rirzAkSypj3UC70oFHfwqbpRhSzd/Yz7Dm9vPY0rdAP7vHPxNcJQBgdQb/2Iwma1SnJOkqdjIe++rsXRB1QDZDNnOprs6gu1EaUpWq82eFlSKredK0JW1ippfWTW+fSrhyejV0jAeAN+Qmg3ctuB+ISOOqXV2gw8lfkZbqxqMukVVh6dxF812FTsHV/I391OdR7O9S94S9hPfEXRFf1Q8AezPdu+gtkZY8whjak78iYxnsbhFbl0tzby+RBnfMnw2r5r+oriWVKOE9a1fHA8AbMtjgn5+cZAWMRGRwGZ4LrbxLXWNwrK63A+3npZpfVLzzPHo12LPdHw8A78mAj8kdl6d0z3F/dqd9NdcVXalECVFUlPZWsQwp5df725X0aubD8Gr5nXVLVap1A129NB4A3hO+ya4VVtu+jOpnr7q4OwBMAgbfAdbcvqzr8bg7AMwDBg8AALAhf/zxx/9ygsEDAADMDgY/Eeu+NL1W3RReWgeA/cDgZ+HdXHY2z8PjAWAzMPhutHxe691cdk63w+MBYCcuN/hngl2cMb6UPOy4p4FG8d0Nvlq3pWKgbuwkNtaNXT+l4Go/LclviwcAaOEmgw8oMw48hpU8KVA3m7OLt2UrlmSIuu1e66rbsQ/huvb81RIubQPjAQDCTGrw9lFGIzSWeB4w5m8nYPCpzuzA7nWz+70tctX19tx1uo3aBsYDAISZ0eDDPhrw8uye1GDS/aejWeyyteZTNqGntNNe15JK9yFWt9RnVyddmu3abo4PX0gAAEfu/hu8RZPwLZFN5D8dyuYRpnL1Uqtln0obdVrU6gB9FkTRamnLfEv5dV17vFfbqHgAgDC3vove4jr2MPuQ7FGXYTxy3tYLndOosxQfq+vtp8U7dV1Lny35jzGW2xZtulz3eH1+AQCMzGjwrshqcMAtAsZQPSrQo4w6AzJcaUWAvUWiriWJMXn13OmW6vw3xwMAhLn1b/Dpwvr8JFVmNCpLfm9TAsYQrvUaG8jZUrFUt9Egh9dtyeOd1NXxAAAt3PEM/nngVL60/3hUT+CZ4BquE5b2dKfkN9XmNKoSZ6TUzy590PM9HfXWDefxzuvqeACAFvgmu1kYtfq/W90SuDsAbAYGPxHv5rXzeB7uDgD7gcEDAABsCAYPAACwIUsa/GwveM6mpxe8dP8BekrM9qeN2eIBxrKewc92H5tNTy9w9w/Qo5nNU2eLBxjIYgZ/xb3L/vmr7NieUrqy4rze4fzOpqed2Tx1tniAUdxk8M9PGuVmMzwPWPZnh3fU483s1e9KWw0rjW3XeWndZ45Szu7nt1RxyPVm7I8leez8eqfzbvEAo7jvi27atYrVzX67I13W8Zj+i2b0Sp7deXWfw3XbS9v1iFqXnpSSnl7novH8eif+bvEAQ5jx52JLjDIelx5vRYvO7P7r7KRvn12tiNV1VbFjPxcXCfDqcV3zooGBOXrn/m7xAENY3uBPAcaF6Slp1BOesndhvXleMZ320tWcItXp0HV98J6je/R8HDL2KhtQyiOGVLXp6tvHh080QC9m/D34Eq4Fq7q/HbHYpYeqK7seZS/UTq8+exc4PU2R5M4+lMS4ZtpRz6m0RU/pvAj91Xl5p/xu8QBDGPxrci70+nLn0q/1BIpWV887Z9dXiV2kDrv/FFfLWW7fpkd4cHb/aWc4j9AmeIf4Z4KrBEA7Oxh849IfViVGuXJWgy0LdKOG00BXQl3ILuOKJrgEWPSUrmf7dX6PnmrF085wHqFN8G7xAEOY9/fgs+h16uYFN6vHmzam35K877za+xyrqzOv2IfZ9LTn8U7n3eIBRjH178GniAynVKX9fdFp7QtrVmdJ/HXTOZYw6uzb5+xwkfnqVmg92fNyqaRL9YTzeOf7bvEAo1jsm+we8927ZtPTi1Hzmq2f6NHM5qazxQMMZD2Df8x3H5tNTy/w+A/QU2I2N50tHmAsSxo8AAAAaDB4AACADVnS4HmhLMb79I2XXgEA1jN41uIY79Y3PB4A3pzFDJ5VOMZ79g2PB4B35u7vord/KjeLGCs+vOut6w1uGV7N09ixUvK0UDVDqZ9hhcaBpT5Uh2PwAPDO3P1rci12pd1dr/72ul0eCninqfU3eny7u6dh7ac1UBePBwCws7zBPw+k+0XdrBLv4wARb/Tsap40lfa87HBjZp0k0M++dQOnzC4pFg8AMC13/w3eZQPpWHFIp7UYUkCby5gf5ocj4Tyl4ca0dgJe2163NFAkvMLgnwmuEgAA93CrwTeuhmGDPx0tLdDCtEoLur1uNo8ufRyl9eiulo4G5mtRW80TqyumqQ9l95fwxgMATMt9Bl/1oSpieGD1d1lIoK4o4S1tz1MabkxrIWa0jXW9/Tke8hYyinGdAgCA+7nJ4Lusg4El3utGXp2u/Mc9p6MuAxN5SsONmau0u3v34OpRY5VYPADAtAw2eO9zIK+7BB5YdPGeduP0ung1v720znNzn3UfcHcAgBLLG/wzIT3q6ohxlKgbsEyRJzaFtEpVgzFP6RTEVF3aZ6+q9j4DAMzDYt9k92AVjvJufcPdAeDNWc/gH6zFUd6nb7g7AMCSBg8AAAAaDB4AAGBDljT4US+o8kLuB7v2Ydd5pVz9Jwz+RAIwA+sZPO4+ll37sOu8Sszm2e/Wf4AbWMzgcfexXNGHLp8DbNfQMna4/hizefaibQSYljsMPvsh5hilDKX8V9c9Vmmv6xoiJpsV41JiL1qtW61ulCeSt09QDK9mtle3RIp5eadZbU7g+pwqHgA0t/5cbONCLNYpYTzhctW6xyotC3FgVBqs+9ylFdUmW26HS18xo1cqe92WKpZUOsyux9h/7+xmiwcAwfIGX8qpFzWXpOqC2z5H78KtDS+brd2rqn223A4Urc63ETGvXlW85zcQcNpv7L93drPFA4DgJoP/uN82LpeWda26/3jUqEcsjum8AnPsPiTWE0tRndNe9ymxZwjMIptcHBJ6jPpdUi3BlipHMSKnt4czxFsuGAB4rPU3eMtS691vESbqlm4b66bDLfGlIa5D3iY8ag90SkksmaukSQJ9FsntdQO4zq9FeXXK6X6hzTuXqeIBQHDfS/TG1VaQHZuuaPr2cY9Rj6hbWqBLdUv5A+tgtRtdCp2GeyU1VjTmuW5eXfSHk7jO8mnn6YIsCQhceMPjs/c7AEjZ6m/wltv6kL2uV4M9QzheJ2lfCvXwNL+xovEUXDe1xsy9YoyjSqliF7lX1WzxACAYbPDPT6IIKlIAACAASURBVIxy9XpnuR3D7m3huo3Blj4bk+u6XfR4tbXkt2CfVywmFtZyHi398TZttngA0Az+G3xpf4nSOpXNI+p6qfpTup4G6trtRBc95enSgVcqIcmiM1BRz+ui89tLf5rTGFZqqbecGOWd1GzxAKBZ7JvsHuNWAVafD3btw67zKjGbW79b/wFuYD2Df+Dxo9m1D7vOK2U2t36fzgPcyZIGDwAAABoMHgAAYEMweAerv5D4bn/a4Hztymx/MuBPEjAnGLyV1e+T7+aynK+9mc2D8XiYEAzexAz3xpYPa72by85wvlpYXf89zObBeDzMxtTfRW8Z8kxwDbcr0aWNSXS8TtXX4Kt969I9nUHUbSztqqvD0mC93621ULoqzJLkHv2ugfpSdKX1ql09HsDLvF9V61rFGpNUS+jMlirV+Owa14Wq/tL+Rj3V1VnUailtqWtJktWm+3Pd9eYtcZt+1xBdMaAnoHbpeAAXkxp8x0jvmpLNoNNmk5x2WhaywPJqoapfDGzRI8am801vi0ONdevSowYpSrhKW1RVk9yg36snjQ/reR21VN8mHsDFjAZvXzWMwaVlxa5H57QsTMdy2UNVnSlV5Ub9YmDLAlQam53vaWepe+Hz9WiYTulclxJm99urX6o/vD/dGdBTSpJeD8ZCAQHLxT8TXCXgnbn7b/D2Czq7M01lSX48lM2jVem0aYZSchEsJt5ONqeevmVSVamirrj9/LrWZ+vq0qWjeqal5KU9Qkm1dUL8Dfr1frv+gJ7qEIue06Hs/hKrxwO4uO9d9JalzRtpHFha9YyFdIyx6Ou/2VWytCB2oZrQ3rf2uqX5Zv+bHRWrm+Y0TiGQLXvIXv0G/TqVUX8XPekF4FIbELBc/DPBVQLemRkN3husR+mFyVJIBxhXJUvRwLJrwTLBgJ6+dU+Ll+V2oG7Hi9DbNHvpq/V3nJf3Cknjqye3qtZefYN4ABc3GbxeNVoWRL1AeBcgUaVavZpBL2TVbC1z0eum5XavuhYN7aXb2xi7rq6+3uwlYuc3oN81RFf06glIXToewMutf4NPy4tDD+da1mW1EiVEXXsSSyuuuNu7KnZUolfnU5XnVy6q+7BdGM+E9FAgrZHr9FfnFVPbpZ9P5/3Xq3b1eAAvfJOdldXvjaP0v1vdXqyu/2pmc1/cHSYEg3ew+n3y3byW87Urs7kv7g5zgsEDAABsCAYPAACwIVsZPC8Fx1i3b7O9lLr6lQAAO7GPwa/rUmNZvW+zefbq1wMAbMMmBr+6S41ij77N5tmrXxUAsAe3fpPdqfbzKy3TqH5eNhswqq4l1TMhltZVND2a1u1SXZyONH+17myGjcEDwAwM+ya7jqZlcak0pt2r+rq77k9LcpGkKukVU7rdq66lFh4PAGDnpp+L1QbW6LVVIyxVP+33elgXA7b0x1XCVdquytucWF1dS9T16pktHgCgO+OfwZcczo5Y9I8lqvu9Yqp17Yj+uEa5qrv6hsF3j38muEoAAGimMPhsgJ3sQItJpLdda27VINOdpeSl/mgZ2SRG8SX9pf6UJHmbVqp7ypbdqVuhi04eDwDQncEG/9pvMYYSwqhSb9CGZHepUt1HaC56SOlodr+9uqtvgfyuutUS1Rb11XBDvO4zAEAj4w2+FGAnZhjpfq+egCXH4l2GZy99hdGOqjuDYbfEAwB0Z/xL9OK/9lVSR7Z7YaCuV7/oT7V7Ybx9u65uy3xnc2vcHQBm4NZ30ZdcvLSgdzH4aomW5dhrkFqe6I83rRFX39rbpeuGLwavpNniAQCuYJNvsnuMW1VXX81X79tsbr369QAA27CPwT/W96pRrNu32dx69SsBAHZiK4MHAACADzB4AACADcHgN+T+l74BAGA2MPjdGPXmNQAAmAoMfiv6ujIeDwCwLiN/D17vT8NOeOOfhq+qteR0SbXkcWmoltaSvDq7qAIAgPsZ9k12en9LZDb+ZPDXCTiGZYcIr7XI0KWrkuw6dU4AAJicwb8Hv4rBxwzYNet2j88OL6XF4AEA9mbbZ/DG4Za04dLGBxnthV7DYzkbDf6ZUB0CAABXs5jBpxaSukua0FJd5BE5q6pErbCeEiKnyKAzV4sCAMCcLGPw4VHtpWMiH37DDhd6DbdocFW06PE+EAEAgBvY3OB71e2r8wp3f/gN3lIRtwYAWJRJDT59LqifiZbo+MDCOMSiM93f64mvftxgua2zAQDAKgz7PfjS/tPR7E678XQ0ePsorbPUCq+YUmmjHt1/kQ0AAJaAb7LbjUsfKwAAwCpg8BvS7s24OwDA6mDwAAAAG4LBAwAAbMhWBr/6C8ur6y+x67zmx9v5q+MB4E72MfjV15rV9ZfYdV6rgMcDvC2bGPzqq8wV+jt++q5Fw1gBghn6cw94PMB7MvL34PWHsF3o5NnPnRtLGz8v3jgFi/7soaryat007NLz4lVY0lPtjzGtJUxIqg4PVCzVLZ0Xy5VglXhLPADcw7BvsjvuafQSsQSn//WagTHgav3Z/e11Sy7SK7+3ug6za2tUrvPEkrtGee8vlqvUWPqeeAC4gcG/B5/eDmAxyNd/07p6rbQYyQ36s/tb6obz24tW+2ZJ4tLWXuI0vHp5GOW5mla9ogLnxduKq+MB4AYGfxe95WgVy9hXidON6gpuWdCv0F/KedRcEl/Ckr8aY59stW9ejgNj+u390Rl0xVNMYL6WKq5RAQHd4y0NB4COjDf49ru6a6F/3X4mHpldgEpLUjZnNolFXklzNkOXJbKqUNcNzyubOZs87XZ2j1DS2KJshqrCNCA835KewHy9fbg6HgBuYNJfk3OhM4iFOCvAuIDqBbqj/mzdR22ttxRNc2aPioHVEo0ZjAOvu7p0Z0pHT/sDMvSQwHwDArrHPxNcJQDAy0iD73Undy2Fp8VFr+DVbNUhFqpjS4JjNlDN05L2FNmexDIqdnVZNOjLQ/TN1VKvtsB8vd2+Oh4AbmDSd9E/PzFOoxSp62YDRAaXwbjQ67XltldVe34LYXnZMLtOS/JYTLg/jcEt8/WexKvjAeAeVvo9eEEpMptE1BVJSsGuVKKEPXOXiqU8+rwESlQFxHRW97u1louKFgVydq9bTRvQeWk8ANzDJt9k91h/lVldf4ld57UKuDvA27KPwT/WX2tW119i13nND+4O8M5sZfAAAADwAQYPAACwIRg88EIr3Mp+1xt/2oA5weDfHdYauJNdrzc8HiYEg1+elk+FXbHKdPmU2kIwX9fYnlImA4+H2Vjp9+Cr8d6lxxivP39c2m+XcUxlyZ8d6yp3HCvElI5Wc7pOqDEsG9yl/97zmx0eyP86apdqrGipm+ZxpTUJzY1tz+w9XzHB4mLrdSrDbQQwMuk32aVU4/VaphMG6mo97Uq8/QlQWqR6zatavaX/OoNdZ+z82unez/a+HXded36zkvTRlnn17XM1Qylh4Gy64gFcDPs9+COWu5/lDizuhMb7Z0xDNpteI163xUqh87fjqms5j67SHfvvKmG8SHr1v28/2/tWrX7RxfaQZtb3enDNK3s9lDp2islm807BFQ/gYvzPxVaPVuNf/zUuZOElzLhGiP2pHosYnSfFPh1dq1S3NMqop0v/Y33TA0v5W/p/3Gnvp306gYFCT6mQfb5ahkWenfQceedl33lKLkp4p2CJiTUcYIqfi3Vdsqf49E5+ypzeN8RdunRH0nfpkn6LnlJFS/5GtOyspC5iuvS/2re0kO52aY8uYUEkqRY9BnTsm0go9jdiPE3HnfZ5PWSfs4Wq+bNjX/+WWpctXeKKPgO8WOwZvL5Xi4VA33uNiLt9QG0a483fiM6cLd1FT5f+676J/d55NU75NTy9Dr3JO/btRK9CVRlVed6E6TVQmlSpkHHnqV2ihHcKlhh9vgBKrGTw1bBTQPb+76poz29RK9ajFpHh+7yrmfZavWL0KNE3XUKfl4BU+3Bv6YAY16jYKb7iepvqesjufH5SzWaWH4kHcDHpu+hPd6dqvN6fxRhsWUT07K7IH6uVHevKaakVaKwx7M7+2/PYz06LTu8Qy/VzxXyrYxvTXn09GDNkEwZOpSsewMuw34N/JK96HdHBeoj9buNaU+x6YquJd75dyKbNVrxCT0v/q/tdGvQpMKaylLDUNSaM1RVHe51WLUkfXeJ6EC01VonFA3jhm+zeHVYZuJNdrzfcHSYEgwfWGriV/a433B3mBIMHAADYEAweAABgQzB44AXDmxj7Frb5WV2/natf0udPBvABBv/ucN++B9xds7p+L7N59rv1/03A4N+ame/VN3xq6zZwd80V+ue/fmbz7MnbBQFG/h788ZDr2jLGlz606ir3TMgeNWbzCmjXX81frW5JopsT0+/tUrZuNYM+v14looou3ZK8lP9UqCXVqOvQdV1lxxqrt/SnpMei0Fh0zniYn/FfVetd44zBx7CWtamq3JJkktJpklj1Upjltiu5hdP1c8psWWQtAS1qs2N1f9rzZwtZUqXBo67Dqphe1Vv603ide/XPFg+TM/j34PXRUrw30rhsZYdo5V6pHWcaFnaMDFfPRrok2UtUq5c0WC4tHZDmz5aoitR1G1vR8Tym8Y0NNJaOpe1SumN/stmqF5hZ7IzxMDkjn8G/dhrvZq778/HeWBpYurtW77QWMYG10hscWFBOkeHSroGx/qeUhmfPlxho0VbKn+oUyV/BpeSl/C46nsfSTL2jvEVjOfV5SWmXrYeUjuprzCtgeHy1sTAPk/7YTBZxL81ecNVLsBQsKNXVkgL6Rf5SQ4Ta0nBLWq3TOMpeyEipsccGnv7r6rPOr1uRShVTyNa1J6/mF0X1rLPx1UK99OsMxszVuu39aT/k1TxVPEzOYIP3LgT26+8VLJJrVTq+dLua3KtfDDTWFSWqpY3oIS79rorp9ZP9ryunzp8etaQVtex5XPkfnc5j2pMuhU7Ddc7r6rb3x5JKHA0IGB4v7hcwG+PfZFc92h6ZHRVYy0oBxvxX6w+UsFS35NHBsVa09Eq3zlvxtN+bv5rTJdKYP5Y5jQ9fh66iWknsUjeemsb+NMrwtm62eJicSQ3++YkluJpTL1uxPJYFqJowUDdQUVexCNAZAv2xJG8/R5YklvPY3u10ePj6MebPFrLkEWfqzuswdl0FtA3sj7d1s8XD/Iz8PfgPsodKwcej1bmVinpXJZ3Hm80uoJd+XaIqoJqhdH5v0J+tUtJjz2A/ahd5UWaR/1SommHgeXT1p2PfjgktMWnpat90Tq/OqeJhfvgmu3eHe/U9XN3n1c/j6vq9zObW79b/NwGDB+7bN4HHa1bXb2c2t36fzr8bGDwAAMCGYPAAAAAbgsEDAABsCAYPAACwIRg8AADAhgz7PXjx+dESvT4X2ysPAADAtEzxYzMWjvGW21fnAQAAmJlhvwePwQMAAFzHJs/gP/7bnjOb55lgLwEAADCEWX4u1qK1NKS6M1tFSzI3EAAAYEYm/TU5QdbIH1+fgnuT6Dz6gQIAAMCE7GPw9jzZsEAeAACAaZnib/Clo9qGLXlSSvEYPAAA7MTI34MXL3pn91eD7U/fvXoAAADWgm+yAwAA2BAMHgAAYEMweAAAgA3B4AEAADYEg4fpeLc3ObbP15vh3ToM8J5g8DAX7+Y9veaLxwPAiTcyeD7/Nj/vdoL6zhePB4Ajw34P/rXT67v6c/AiVbVQNUlAqvej+dmdp6PhRyqugaIJLWkDRac6L4FyuoQomp707CGRzVsdAHZi5FfVBhbK6mrbxfyEWntyl4tUNbRPs4t4734X1cwznBdXkmoJuzzjBRC4KlzxALAQi/0evM7jXet1Hkt1S7YuGiwNdA3XGgIdKB1yldbDjaq69KGkQezUUrNpjbXS/SJMF22MB4CFmOK76O2IPGKtL2GscioREGlEDHR5jNEMAkpcffNWFxWz/RfnpVcf9EBjXZHWXssuqTrWG/9McJUAgFGs9HvwIs/jc6lqX4CEK6S3s7PIahDxj682VpUktGVLhPXYlWSPivyl4SKtUHh1H7Swal3XfC3D9SFRsT0eABZiimfw1aUwO+q4Ry/idnR+y6rdoiE70LXQZ0UG9JSG6FRe/WmkyHmalz4vvfqgBxr7L9IG6lZPQbWuN170GQBmZh+Dr6aqVmkPCETqUa7piD549ZTiA+11NU0PN5bo2AcxytX/UlpvXcslqnM2xgPAQkxq8M9PTnKrS17AgSx6LBliwZY+NCoJDPHWDegp1RWZ5z8vXrzzrV7DjdUBYCeW+T14Y57wmiXyV9XqnK7SlgzhaVoGlvpQ7X9AT7a6luQ9WqrScl4GzleX9qrqNQsAmJM3+iY7WIJ3c51LHyvcUBcApgWDh+l4N+9pny/uDgApGDwAAMCGYPAAAAAbgsFfyH4vhO43IwCAXcHgr2JXL9x1XgAAm4HBX8LeLrj37AAA9mDY78Gnn6vWtiHivZ+E1p9v7vIp59InmEWJQFGXVC3JlRaDBwCYnym+yS4bcKIUnzq9nnAp3ptHl9B1vUfbh+j+4/EAAPsxy+/Bz2zwgRJV/af92aNGSVUx1f5Xq2fTWqoDAMAohj2DP2F3LBF/kcE/pA1nSxgFV49m63p71Vi9NMRY1NU6AADoxRQGf4W7p+5y8u+Scepgi1cJsywNT3eKuiKDnlpJbexQdj8AAEzCeIOv+qUl3ptEDKnapyWzt7QWY3dre0VLqkaDFw84AADgagYb/Ch3d0k67rHU6mXwou4NfasetVcHAID7mdTgS8/52t03pseLy61jdV1DvH3D3QEAVmfk78E/+hl8KX8Wnfwigz9Jze70VrfEl/KLutW0XVoEAACXwjfZXcWuLrjrvAAANgODv5D9vHC/GQEA7AoGDwAAsCEYPAAAwIZg8AvAC+N0AADACwY/O3jbB/QBAMAFBj81uNoRugEAYGfY78E/nN//WopPP8/t+mh4ab9XUosend+uP6vHWMU+pFTUVVHkEdlaOgkA8G5M8Xvwdleujq2m6pWnFBPII/Lrol1qed29qiqWx3g94PEAAEam+D34Fnuompx2C2H2Oo/R6nSJrKrjWK9mnS0NsHe+dB5Fqqy8Uh7jXIxqAQBg8DP446JvFx22GRHsciC75uwo+1h78mpOV2fsSSwlvKX1KTOKdLUaAGA/Rv7YTGAJ1vHCTUuH0rHP5DFHNo/FQnSS6sSrR8Vk08j0aFaAFqk12+cr8lRLlA4BAMCR8X+Dt1jdCeFMxuD00MmEhODSWLtI43yNVhrW4217dUiphL10VZKxbyeqQwAA9mO8wWePalxeZTx0MoNqCVewZUhWXlW2Pbl9p5ZkVyUkhcW41AIAvDOTGvzJbo3xlgmX8lgcyKvfoqeq1lhX69El2oO98/VeD6/99hIAAG/OyN+Dz+48Hcru1LZXpZSnpNObx6tHlxBF7f2sVqkOqdZ11UrziPzHscYqAADAN9nNDq72AX0AAHCBwS8A3kYHAAC8YPAAAAAbgsEDAABsCAafYfUXhGfT364n8LbBS+MBAOYHgz+z+lo/m/5eevB4AAAXGPwXVl/lr9Af+NzdcWxfJVPFAwDMzPK/B3861NCKvMi0iiVJqif9nPfraBflr1TterLDr9Yj9uts3uod4wEAZmbSb7JLEfG9DFInMVYp6dSau0xBuKlXTxfCevB4AIB2lvk9+IAZeBF57FXChloq4SrdUU87GDwAwECWeQbfa6xOWy3nTejKad9Zylkq9HHIrucpsYjx6jGeU++JuCI+3BAAgDuZ5ffgXbYhrKi031JCmEpVfBqjXSp7qDqFFv0BPY149Vgm69V5dTwAwLSMNPjqIUvwcU+jUXX0v9h8s4fs1fWDhpJxXuTuF+mZweCfCa4SAAD3sJLBV/3gIoP3Zu7o7q7S1eFpKkvycFcDeqrlZjB4AIAlGGzwev/xUMkYOhr8o4fHxwy1XfkrTxc9vbT11YO7AwDYmeL34FNZIlgfamyHzmC3w5KkbIYuyl+ptKTrSrfrqZ5Er9Sr4wEAZoZvsjuz+io/m/5LH7sMjAcAmBwMPsPqa/1s+q9+ZeX+eACA+cHgAQAANgSDBwAA2BAMfmFWf2EZ/e9Wd7Y/tfCnHNgbDH5VVl9r0P+edWfzYDweNgaDH0bLR9RWX2XQ/851Z/NgPB525Q6Dr37u2W511TyuyRuHWPSH0zrkfh3bnvmieVm4Tf/x0Cj94evTWLeav720GJ4esujpVX2JeIBR3PRFNx/FSrfT/2bJxoicgWw6zDgXrxIvLnexhN08r9v0V/8bw6Lf2M/2utX8Jz296pYqGufr1bN6PMAQpjB4yxpUCogtoLFI18LduKpqSeJQoGjjvLyn4Gb9Qq0eLsppJa5+2smO1flTPdmB4brhZnr7sHo8wBBu/Rt89s4v1qDS2GpOTXidTWsdp2Ap9JTYZVTlubDrL+13zeJS/aeTks15tf6snmxdF+JcpHVLetKjsbqlJMb5evuwYvwzwVUCoJ37DF6sPunRFHFXyR5K71163RHxpVHVu+5F92pXOT0vod84r2x+PetL9b/++yxfV1foT3OWpmCZl73uo3Ad2vWE66aZs/m9ObeMBxjCsF+TOy0B1YVGLFhiZzWVkZL+x2EiXQoZxZT2x8qJ2bnijQIu1W+5rq7Q/8yhi3rR19ipaEc9Ikwk0fm9rVgxXvcf4Abuexf9qXB2PRJCq8Guu1B7cLue8H0+tuDalVSX5mfZKiwCLtVfva4u1S+ShE+3rmsR36gndr6qV5Gl9DbxAEOY4k12pf+WAiyrdhXjEIv+mJ6WFT+25pbC+s7Lwj36q/8No5Pc2Td9vnpVLw2PVfSKWT0eYBRT/B58aUEs7bQEW7CMMur3pm1E5zcKsJyU9FBQcVK6KsySpHqd3K8/LZ0V2bFuqQ+Wo+G61etEt6ix+lrxAKPgm+xWZfVVBv3vWXc298XdYWMw+IVZfa1B/7vVnc19cXfYGwweAABgQzB4AACADcHgoQgvSH6w7kviczLbvPjTw2xnBHqBwUMe7vMf4O59mW1evHkwFg9LgMG7afzE0W206Jx5gnf2H3dP2em66qtnNg/G42Hk78F/ELiqjEuMrpvmcaW9Qafe31FndmyvzKL5sbTVsOp5t1O6Yl3nq1fdU6GWuiK+mqT7dfX8ijHPhH326lk9HuZn2DfZlfZUMQ7RdR+FNaLLquFKVdLZvW92XKteNVU22LvfTvW8u1LZ819d9ySgpa4Iu/+6OlW0COgl8oo+e4WtHg+TM/irar33VXu8vkOK6l2Wj3ad1QXlurVYpPXOy9V5bwmjhpbhsfyN56va/5brRGu+7qJ6mB8waQHtAVrPSYm9z9WcW8bD5Az7PfjSHkF49SmtcXqxS/eUuEKnZUFp1ClkVOXZUxmV66OxeYVPxGt4NcA+O7uYav9L14albqxjsf6nSURFY8L2AK0nleQqYe/GuvHhCwDuZ9jvwYudJUQGccGd9hz/G7gD36YzHdJdZ4lSzsC8Ysrb51VSUm3pKYk9v9jfpe5xoJ6arquVtHdeoOd1lJcVX9V/dZ/FTp3Tq2GheJicYb8Hr/dnCaw+llXAex++R2fjoRY6loud917zaj+PsfyNF5XIKa5bo5jjf+1JulCdl0WA1m/JYNeT9tkiz1J66Xh9HcJUDPs9+A+814cr3rVYNI4KxBiDS0e76CwN7JUzIL7jvBpXn/BZjl1XjXWNYo7/TYd0v7ZPA0vZhCRR/eY+G5tjKb1NPEzOpO+iP93tLUNEmD1VxwWui86WJthXuuzYLmm9+tvnZTnvdtLhpfxX1y1p8FaMXW+xWtmxOls1+ag+W+p6xaweD/Mz7PfgS/tPR7Oi7ctQKf8pwJ7WRaNOrbyjzqwqfTQ8r+p8m3QnJdpT2fNfXbdUxVtUX2y9plAqrfVY6g7ps6U/Xj2rx8P88E12kId7+wej+rBr/2ebVy89s7kv7g4PDB4E3Oc/wOP7Mtu8Ln0lYMt4WAUMHgAAYEMweAAAgA3B4AEAADYEgwcAANgQDB4AAGBDRv4efPjzrKchrjzp51lfo8J6AAAAZmPwz8Wmt6tkXdmeJ/vgoEUPAADAhCxm8KWn3dk82UMYPAAAvAODfw9e7y+FpWacNe+H4VX301jxIKCaCgAAYB4G/x682C/ChAFnd5a82ZIHAABgRZb5PfiSW59uZC08WyXr7tk8+lECAADAhIz8PfiwWR4Hlm7bD1WDAQAAlmPSN9np58r2PCUweAAA2Jv1fg9epzJOOxscyAMAADAnfJMdAADAhmDwAAAAG4LBAwAAbAgGDwAAsCFbGTxvjvtgVB927X/7vLwZZosHgBXZx+BZsz7A3fvSa16zefau5wsAXmxi8KxWH+DuKS2fe+w7r9k8e+azBgDtLPl78CnGT8yfdhqrW/S7khzjA3p0FaP+jkVLdY9VSnqMdVvytMxOpy2JFN3oVX1IPACsxaTfZOdCuFq1VrX0FXnE/u5udFHPq3VLJQLz7ZXHi0iYljP21itytngAWIhhBn+kcXV2OYQwhuxti0E+PzHmKWkTYRZa+lAV5q1rmW+vvp3y9ELUTcsZe+sVOVs8ACzESr8HX8JlbPpQunwbHciVJybVMtaevFrIrsR1Tnv1zZ4nxTKp0rxKqo7JRRXvyZ0hPtxAABjL4N+D77JkVBdisdqejCS7lmVXt+PRR8FvBDE9HfsgMnepW8pwbNSjoW+lPB2p9jO7UyvxipwtHgAWYvDvwVuOVrE4UGk5zu60xJ8i9dGwHhexPrTrqeZMb9v7FsvTBZEwLXdSUhrrFTlD/DPBVQIARjHy9+BfNK4a1bFiOS7trA5x+VBMj5dAH8R+u6RqzvS2vW+BPOGJpAPFIXEGtZheGobEA8BCTPou+tPyXUX7k16Ojfl1hmrCvnpEFWNdoyFdWtdSuj1Py+zsOS399MqYLR4A1mLY78E/DK+H2xeg0nqqVZ5+0AAAEvxJREFU89uTa5HGbL306BL2ui7xF9Vt6Zs3T4DqSX/arudSNm/1sfEAsBabfJPdg9Xqk1F92LX/veY1m1vver4A4MU+Bv9gzfoEj+/LRa9wLBQPACuylcEDAADABxg8AADAhmxl8LzweA/zv2QNAAD7GDwecA+rvOkMAODN2cTgr1j9r/vw1br0bQgeDwBwHSN/D/5Fu5Vmh+u61Ypa1TPBm6Gap9o3nScddUWfjfpjp6AxHgDgnRn/c7F2DytRNdc0fxer0xmM8xLmp/um85SmfGmfXXpETq8GAABIGWzw+hmeEZdBdqn4qJmuvco9Bn9Pn0v7RWkMHgDgIkb+Hvzrv9cZTym/tqUSlgwP57yqSox5RNob+iz2lxoocno1ZEvrugAA2zPs9+CzDhRDG202efu6X7KQ0rxS10n975l7DJHNrw1Ma7DnSdMG+vCUjy2qRRvjAQDelmG/Bx8wmBLCeI6Fske70GicIs+joN+YpFFPmtle+lSuVNcrxhLfa74AAEuz7e/BZ83SVdGuSriXa14lze1KYnrS4fbqJ3O90+ABAOAx/E12pf3e515p5NUGH5uXPc+EBv/w9PlUK1sadwcAuI6Rvwf/QfZQu8FXM3tLGPMbj1oiAyJFcK8p2zNX++xV0qIcAODd2OSb7B6s/nfRq8+4OwDApexj8A884C7a+4y7AwBczVYGDwAAAB9g8AAAABuylcGv/kLu6vqvZvX+jNK/bt2r/5SzejyAZh+DX/2+sbr+q1m9P+u67Ni6s3nqbPEAgk0MfvV7xer6LbR8Qm/1/qzusmPrzuaps8UDlBj2e/DPhJZp6OGu/GlkSWS7bFE0UEjrbNdfPVk64XUG39if46FAWgv6ojpWL+3vVffhv0561X3k+myZr1fPu8UDlBj2TXaXrp6no/ZCpVXPcjRMF/2WPrfor5670urczqX90RmuO78lDXZt7XXt10l73VJa43y9et4tHiDL5gZvr/I84MrWPpGO+u23qyVE6fSQpXthuvSnNKqaIdCfNLI6/PXf0n6vbEtd49S61zXWqub0atg4HiDLsN+D72gGpTyBEnpI+1pfShsQoxO2LLLV6qVFOR3ylNinY5Fhx3sdevuTRrokif2u7lUT2q+HvnX12NLw6th3iw/foeB9GPx78F0uzdJwsS6Xquslz1JI579af3UKlkLV/pQ6ZplsgI79EXu69MelX0/kYbiudGY9nWyGan/CdQN9tszFpWHjeIAsw34P/ohllRQE1ouYktLR+fUH5mVciL2rf4CO/UkHlm5XC9mr67BAUWPpWN3sofa61T7r5N4T/Q7xV9/vYAO2/T34WObqKtOy0Iu0MT3G4MCk9Ki+hap0z1kyG9f5tZfu1fyqVHtdneF0qEtdnaSa1nuW3y0eIMsUb7Ir3eHtV3lgDTUGNy5M9rp2SdUwb5+NCqurvM7W0qv5+1OtXlU1tq7l/LbUbemzV8y7xQOUGPl78Nmdp0PGaehIS6qAzl6r8ONK/dV5uUSK86KPNtLen0ftPA45v7qZF9UtnaaOZ9B7heiiXj3vFg9QYpNvsnusf69YXf/VrN6fUfpXrzubm84WDyDYx+Af6983Vtd/Nav3Z3Wvvb/ubG46WzyAZiuDBwAAgA8weAAAgA3ZyuDXfSlyD/Z7SRYAYF32MXjcfSy7vqkKAGBRNjF43H0sffuAxwMAtDPs9+A/KO33ks1Qqiv0dKl7KhROpfXb06bo/AHC/S8NbK/eMR4AYEWGfZNd+t8wwl3st3vVzQqwpBIu3uLxpZ5f3Qdjz/F4AICLmOKrahtxGUwpRu+01w0keeHKZpyUxVBFjGUilgBxDWDwAABXsO3vwQ80+MDUAgZf2t/lscLzgJD9Cq4GpOdCl5jB4J8JrhIAAGPZ//fgsyX0TqMqXVeLyXZDTMFSqKrf0oesTt0KcVTM9HmweVdOr4Yu8QAAyzHs9+CPe6oWoqnaj9EgvWJcaaupqjZp3O8KLh0yWvsruBpwOtdHm5/W4J8JrhIAAGMZ9nvwGxu8K4klvt3IXfm9pyZm8Dr/DAYPALA0U7zJLl3lTzZQxW7hXveK1fUm9+r0Kr+/D8ZznS2NuwMAtLPz78FXk7cv9DqDpUSgPwHlQ/qg9YvSgdldGg8AsCKbfJPdY9yqjVt80KsPuDsAQBf2MfgHHj+aq18RuT8eAGBdtjJ4AAAA+ACDBwAA2BAMfgHuf+kbAABWB4OfnVFvXgMAgKXB4Kemryvj8QAA78Ow34NPPv7t+DS2Mdj7OWyXBmN+e7ZSiY51MXgAgPdhim+yS/8rcLm7t25MhrGWF+Hu4bp4PADAm7CYwV9hwM/c8+Bq6YDRer0fgwcAgDDDfg/+hNHwYv6UNb/nAUuhgPjSowfjRMINaTT4Z0J1CAAAzMaw34M/Yje8ku8KQzrtORq8zilKWMRXk1RnXT1qqevKCQAA2zDs9+BfGN3dFSmGnMzVYvDendX9xolonw64u855SuKSCgAAszHs9+A/8PqHK15Y8mt/6RGAJVvM3XXMKb60P+buIicAAGzGsDfZlfYc94dt7FF209Nw/d/G/PZsokrHurg7AMD7MPL34B8hgxejshnSVHq/pWsiv56vl5LBx+o2igEAgIXgm+xmp5cr4+4AAG8FBr8A7d6MuwMAvBsYPAAAwIZg8AAAABuylcGPeiF69RfAV9cP98B18sG664w3w7vF78c+Br/uvW4sq+uHe+A6+WD1dWY2T50tfjM2MfjV73WjuEJ/+4cD72EVnb1ome9bNUqwxzozm6fOFr8Tw34PXuwPUPrY95C6p0LhVFq/VaKzqKhrFGCXZ4z06nGl7ajzFZwd3n4eG6/nlsumY+b7+3M8ZM9WKmE/ZDwv99f16nm3+J2Y4udiG+8D2bGj6mYFWFKJ1U0fDePq2ymgS3VLkpieLgoDqa47jzdcz6K0UZgl1c398SrUJSzVq3pmqOvV827x24DBd67rzfw8UMqQzda+bLn6ptUGSgcyuPS0i3Ql6X4eT/tLear52xE52/tTzdbY0o49Eaepy7y61DXO3duTd4vfhmG/B3+8OhvvhPoOkK2b3u5VN5Y2sEDECp2G65yn/OJ8PSW9ZNv1lApdrVNUdOlMd5bylG6fRlnmKyZV2t/eH8tRPS8dHxAp5IlD3qN2Ya7MxrkHTtz28eE7yMyM/D34Xq3UC5Cue7ozuE6wrivEpPn1XdFyqLv+bH+qkiyE+1PqWEnPKJ1iiKVQKX8pT0lML4yys2Is/Xnkzm+pUDZ/erSkx6izJEMcss/r6rqW5NWibx6/DcN+D/61x3iVC8RdS+RvLFqqG8usFwjvKHtRu6R0VQqXDo89DrToae9P+3m0XOcW8dU8jZMVlNJ26Y/laKmrlvjS7QAB5eKoXUysblWSpfRbxT8TXCXmZNjvwV99x6vmbz+F4Tu8MT6warjQw1vWjqqwmPjSqNj5vUJnGh++Dk/726/n8AVz9XWujza2tBpsJ9yH2PlqrFuVZCn9tvHbMOmb7J6fGKdhv5OX9sQI3+erwWP1BxYs49GWsNKQWH/66rQoaTmP7Xlarpn5r/NSHsv1Y6c03Duv6+paKnrFvFv8Toz8PfjsztMh4zTEVV6673U56zqJpUqpP9W+Nek+pBKSqoLbq1uS6Iql1jVq8+qsnq80iVenztN3ymnpqrBqhuH9aW9RmiEwr9vq2rN5q+8dvxObfJPdY9xZXP3qWV0/3APXyQerrzOzuels8Zuxj8E/1r/vjWJ1/XAPXCcfrLvOzOams8Xvx1YGDwAAAB9g8AAAABuCwS8ALzSNgs4DwLpg8LODx4yF/gPAomDwU4O72OnyeaRS5ivSAgBcypK/B28coj8kWjrkUvIwfETVm1AnTwtZktzQh0Y91f3t1b11jwHV6gAAszHpN9kJAsu9vZbX26puFDbLR1d317fDyS/SU+1qgMbrsLE6AMD9LGbwsUhXrVLAaf/zgK4b9ioRFjO8Ln1oDLZoyO6PTbm97utQuDQAwBAG/x58elsQXuK9tewGI/z7eaCapyTDLs+YsL0PF+mJ7X9KspGBug+bwWsBAAA3M8vvwYeNxLiyu4rqIemh7NjUS7wGYJRXSp6dQim+WkjkD+ipjrJP3I6Yr6774Bk8ACzIsN+Df2FftQPre3XVzh4VHlDdeXIRo7GV5LlkWxLa52svNPa8eCsKL9dXqbHE6QIAABjFsN+Df+FaCvsGZwNcq3/Jv187SwEV6Z+R4lDAPxqnFsgcC47psV9mrj68DonSAAATMuxNdqU9x/3eVbgUZrntSi7iT3tiTnwcbi9dDbuuDzPo0TGxuq/9ujQAwIRM8XvwqSxx6OFZ7nXdFlcz5m/0Bj3cmF/Pt7EP3oFXnxdjacv+Y0B7dQCAm+Gb7GYHdxkL/QeARcHgFwCPGQWdB4B1weABAAA2BIMHAADYEAz+QniBNwZ9uxpvhzkjACuCwV8Fa2IM+nYPeDzA9mDwl8BqGIO+3QkeD7A3s/wefODz068h9iSnhMb8AbJjLZ+3thdNI8PK7UPEeXRVFPmr1S1JUp3i5Ib1N56vR9d+Bq6HwHXiVQUAA5ni52LT/6aU4kVOe7aAHp1cV8wm12uxyGbMb08ViGxp1zFJrHopzN6TgP72JnfsZ/h6CMzaFQ8AA5no52Jd6/vrv2Ihyx56HrDkD5AdqBfckqpSnsCCbt8p6gYCXCXC1aujwvobg43Xm6VEdjrh6+F1yDKLcDwADGS8wZdWKE02vrTMdVleXdpKCY9TTmvZiwYW9EATvMHGumJ4uHR1YFh/Fz2x5rdcz+J6O4XV1TvjnwmuEgDQi1t/LvZZcLVHD7PJ5i+tNbpcGulasMRiKvrgqis6UAo2NqFU19IBY90SxrRa5+loKb5aSOQP6xHxMT12Sdn8D57BA2zN4Gfwrz16GSol0TvTKtV4lxKhUKTNLs3ZVVuX8Op3NUEPt5dwVel+Rlw67YUCenTzvafMcipfe/RFFZiIJeaEqwQA9GK8waeHBC4LEfkbl/iqSJeYQHW9ZNuTxyqGz0K1hKW6nYtaEdCTxgf66bqeLdfbg2fwAFsz6bvon5+c5IYXsmoeb4ZqfpG5vXpH/cYhWv91ffOWsFxvXfS7hnivW68eb/7XfnuJQDwAjGXSz8Fndz7KC1kpT4qODyz0pSq6tPdoNuwUbOxAKacx7LqmPWoW0kVnR/2WgZbz1aInkP8YYKwSiweAsfBNdlfBahiDvt0D7g6wPRj8hbAmxqBvV4O7A7wDGDwAAMCGjDT46h9cXfGlAONfbcMBrj9wevPwzAkAAGLc9Ca7bG2vwXuHiDcZpW9NKr1TqVq3OrvT+55ceTB4AACIcd832b1utHiqxeBFzmo24davhKcb2VolU68+GjiVs88FAADgyN0Gf8Ti1g/zYwK7W5diRHzVv3XAcS46YXVSAAAAFgb8DV5bdbrf/qxXB4jq+gFENrMl/qg//TerszopAAAAC7O/ya5kfqkRGg0+gH7AcdqpHx9UHyuke9KEAAAAVW76qtqs/2kDcxl2wOBdMrImrd23OmWXWksAAADAi5F/g9e8XLDqxNUw4dzZumJnmkrHi9u6aDq77EAAAIAsAwze+HRW+HH2tvDILPbHAemhZ+4hRamueHCgdWLtAAAQZozBn0Sk9p+G6QzVtJZ4S/JUW/UBQenfbHw1PwAAgIVJn8GnQ0qHxM6qwZcQyV8GLAamatNDVQsvZQMAALAw3TP40s7ss1udxGiNljDvow3j2FJ89ZGHeCyic14UDwAAs3GrwYunv6ky+87SIf1QwPWY46TfWMVS6BQv6laDBdfFZ88mjwwAAIZzn8G/Fn2jE5fCtG1X02bzZG+fdgqPPyU/OVz1kUTJEY2PDMaCwQMAzMngl+izfil2prfTUdpyxOMMEZB9TFAtISJFfGnnnK6ppwYAAKMY81W14r/pzqxhdPG/Oc2ppGG4sCxz9hAAAEZ+VS0AAABcBAYPAACwIRg8AADAhmDwAAAAG4LBAwAAbAgGDwAAsCEYPAAAwIZg8AAAABuCwQMAAGwIBg8AALAhGDwAAMCGYPAAAAAbgsEDAABsCAYPAACwIRg8AADAhmDwAAAAG4LBAwAAbAgGDwAAsCEYPAAAwIZg8AAAABuCwQMAAGwIBg8AALAhGDwAAMCGYPAAAAAbgsEDAABsCAYPAACwIRg8AADAhmDwAAAAG4LBAwAAbAgGDwAAsCEYPAAAwIZg8AAAABuCwQMAAGwIBg8AALAhGDwAAMCGYPAAAAAbgsEDAABsCAYPAACwIRg8AADAhmDwAAAAG4LBAwAAbAgGDwAAsCEYPAAAwIZg8AAAABuCwQMAAGwIBg8AALAhGDwAAMCGYPAAAAAbgsEDAABsCAYPAACwIRg8AADAhmDwAAAAG4LBAwAAbAgGDwAAsCEYPAAAwIZg8AAAABuCwQMAAGwIBg8AALAhGDwAAMCGYPAAAAAb0tfg/3/N9xuRZmFyAAAAAABJRU5ErkJggg==" alt="" />
总结:
这次程序编写好不容易的,到最后程序仍然不完整,需要后续完善。这次的思路有点麻烦了,对于数组的操作很麻烦。导致后来一直进行修改bug,条件复杂,循环便捷很不好整,尤其是数组的下标。
项目计划总结:
日期\任务 | 听课 | 编写程序 | 查阅资料 | 日总计 |
星期一 | 2 | 1 | 3 | |
星期二 | 1 | 1 | ||
星期三 | 2 | 1 | 3 | |
星期四 | 2 | 2 | ||
星期五 | 2 | 1 | 3 | |
星期六 | 8 | 8 | ||
星期日 | ||||
周总计 | 4 | 13 | 3 |
20 |
时间记录日志:
日期 | 开始 | 结束 | 中断 | 总时间 | 具体活动 | 备注 |
3/7 | 14:00 | 15:50 | 30 | 110 | 听课 | 软件工程 |
16:30 | 17:30 | 20 | 130 | 查阅资料 | 查资料 | |
3/8 | 16:20 | 15:20 | 20 | 135 | 编写程序 | 编程 |
3/9 | 16:10 | 17:20 | 10 | 60 | 查阅资料 | 查资料 |
19:00 | 21:30 | 20 | 130 | 编写程序 | ||
3/10 | 14:00 | 15:50 | 10 | 100 | 听课 | 软件工程 |
3/11 | 8:00 | 9:30 | 20 | 70 | 编程序 | |
15:00 | 16:30 | 20 | 70 | 找bug | ||
7:30 | 9:00 | 10 | 80 | 查资料,编程 | 看数据结构书寻找解决办法 | |
3/12 | 7:30 | 11:00 | 50 | 210 | 调试 | 最终调试 |
12:30 | 16:00 | 210 | 调试+博客 | 写博客 |
缺陷记录日志:
日期 | 编号 | 引入阶段 | 排除阶段 | 修复时间&问题描述 |
3/7 | ||||
3/8 | 1 | 编码 | 编译 | 随机数产生一样,然后将时间函数加上后,bug修复 |
3/9 | ||||
3/10 | 2 | 编码 | 编译 | 数组下标出界,内存溢出,通过计算修改了bug |
3/11 | 3 | 编码 | 编译 | 一个小时产生负数随机数和加括号 |
3/12 | 4 | 调试 | 修复 | 一天的时间,调试程序,实现有无负数,有无括号功能 |
四则运算2及psp0设计的更多相关文章
- 四则运算2及PSP0设计项目计划
时间比较紧,我简单写写我的设计思路: 题目在四则运算1的基础上控制产生题目的数量,这个可以用变量控制:打印方式也可选用变量控制,程序的关键是括号的生成.我们可以将整个四则运算式看成()+()的模型,然 ...
- 小学生四则运算C/C++编程设计思想
题目: 1.题目避免重复: 2.可定制(数量(打印方式)): 3.可控制下列参数:是否有乘除法.是否有括号.数值范围.加减有无负数. 除法有无余数.是否支持分 ...
- 20165325 2017-2018-2 《Java程序设计》结对编程_第二周:四则运算
20165325 2017-2018-2 <Java程序设计>结对编程_第二周:四则运算 一.码云链接 FAO项目的码云链接; 1.Git提交日志已经实现一个功能/一个bug修复的注释说明 ...
- JAVA作业)01
一,四则运算 (一) 设计思想 使用Scanner类读取运行时用户输入数据,然后进行数据类型转换,完成四则运算之后利用输出类输出. (二) 流程图 (三)程序代码 //Zhangxiaochen ...
- 0506--Scrum项目1.0
应用NABCD模型,分析你们初步选定的项目,充分说明你们选题的理由. 录制为演说视频,上传到视频网站,并把链接发到团队博客上. 团队项目选题 四则运算 NABCD 模型 1) N (Need 需求) ...
- 关于“代码规范”,“Review”和“Check list”(续)
在前两天的 关于“代码规范”,“Review”和“Check list” 一文中,我给自己列出了Check list,如下: 1.代码能够工作么?它有没有实现预期的功能,逻辑是否正确等. ...
- 结对编程(Java实现)
一.Github项目地址:https://github.com/qiannai/CreateArithmetic 二.PSP2.1表格: PSP2.1 Personal Software Proces ...
- 撰写一篇博客要求讲述四则运算2的设计思想,源程序代码、运行结果截图、编程总结分析,并按照PSP0级的要求记录开发过程中的时间记录日志。
一.撰写一篇博客要求讲述四则运算2的设计思想,源程序代码.运行结果截图.编程总结分析,并按照PSP0级的要求记录开发过程中的时间记录日志. 1.设计思想: ①创建test.jsp建立第一个前端界面,提 ...
- 四则运算三+psp0级表格
一.题目 在四则运算二的基础上,选择一个方向进行拓展,我选择的是增加了答题模块 二.设计思路 1.在上次的基础上,增加了答题模块,每出现一道四则运算题目,便提醒输入结果,如果结果错误,就会提示错误 2 ...
随机推荐
- 测试-LoadRunner
1录脚本 设置解析方式,html形式,会精炼成一个函数,此时找有用的url,写出函数:url方式,函数比较多. 参数化 两参数成对时,在脚本处选成对. 加上进程,加上返回值判断. 最后一段接口url, ...
- Tensorflow从源代码编译2
https://blog.csdn.net/qq_37674858/article/details/81095101 https://blog.csdn.net/yhily2008/article/d ...
- 红楼梦3d游戏
1. 红楼梦大观园2d图 2. 红楼梦3d图 潇湘馆 注册机:根据电脑名和时间生成一个id,然后根据注册机生成注册码.
- HDU6024 Building Shops 2017-05-07 18:33 30人阅读 评论(0) 收藏
Building Shops Time Limit: 2000/1000 MS ...
- 与数据库连接的页面增删改查 的easyui实现(主要是前端实现)
一.首先看一下最终实现的效果,上图 二.思路,主要是分两个文件实现,一个是页面显示文件:代码如下: <html> <head> <title>示例管理</ti ...
- CSS 温故而知新
如何让文字垂直居中 需要设置div的height,line-height 为一样的值,如下所示: <div class="ui-bar ui-bar-e" style=&qu ...
- 微软DevOps软件开发高级培训课程(深圳站) 2016.04.06
深圳特区云集了国内众多大型IT企业,作为北上广深的一线城市,当之无愧! 我们在深圳同方信息港的微软办公室是举行培训,60人的培训教室,生生被挤满了80人,过道都被全部占用了.可惜由于换了电脑,把照片搞 ...
- 终结篇:RemoteWebDriver与Grid简介-----Selenium快速入门(十五)
Selenium的基本使用,已经介绍得差不多了,今天来简单说说RemoteWebDriver与Grid,也是本系列的最后一篇. 还记得本系列第一章(Selenium简介与环境搭配)的配置中,提到我们下 ...
- Prism 的 TabControl 导航
基于Prism 7.1 最近工作中可能会用到TabControl所以作为小菜的我提前预习了一下,结果并没有我想的那么简单,于是乎 各种网上查,本来用wpf的人就不多 prism 的可查的资料就更少的可 ...
- MPU6050学习笔记(电源管理器1、2)
Technorati Tags: 嵌入式开发.模块开发 寄存器107号:电源管理器1 PWR_MGMT_1: Description: This register allows the user to ...