「NOI2014」购票

解题思路

先列出 \(dp\) 式子并稍微转化一下

\[dp[u] =\min(dp[v]+(dis[u]-dis[v]) \times p[u] + q[u])) \ \ \ \ (dis[v]-lim[u] \leq dis[u]) \\
dp[u]=\min(dp[v]+dis[v]\times p[u]) + p[u]\times dis[u]+q[u] \\
\]

假设有 \(dis(v2)< dis(v1)\) 且 \(p(u)\) 在 \(v2\) 的取值比 \(v1\) 优,可以得到斜率式

\[dp(v2)+p(u)\times dis(v2)\leq dis(v1)+p(u)\times dp(v1) \\
\dfrac{dp(v2) -dp(v1)}{dis(v2)-dis(v1)}\geq p(u)
\]

利用 \(cdq\) 的思想对有根树进行点分治,每次计算分治中心 \(H\) 到其祖先的一条链对其它联通块的贡献,维护一个凸包在凸包上二分即可,还挺好写的,复杂度 \(\mathcal O(n\log^2n)\) 。

code

/*program by mangoyang*/
#include<bits/stdc++.h>
#define inf ((ll)(1e18))
#define Max(a, b) ((a) > (b) ? (a) : (b))
#define Min(a, b) ((a) < (b) ? (a) : (b))
typedef long long ll;
using namespace std;
template <class T>
inline void read(T &x){
int ch = 0, f = 0; x = 0;
for(; !isdigit(ch); ch = getchar()) if(ch == '-') f = 1;
for(; isdigit(ch); ch = getchar()) x = x * 10 + ch - 48;
if(f) x = -x;
}
#define int ll
const int N = 2000005;
vector<int> g[N];
int dis[N], dep[N], lim[N], dp[N], d[N], Q[N], p[N], pa[N];
int A[N], sz[N], vis[N], pq[N], q[N], n, mn, rt, all, cnt;
inline double slope(int x, int y){
return (double) (dp[y] - dp[x]) / (double) (dis[y] - dis[x]);
}
inline bool cmp(int x, int y){
return dis[x] - lim[x] > dis[y] - lim[y];
}
inline void update(int x, int y){
dp[x] = min(dp[y] + (dis[x] - dis[y]) * p[x] + q[x], dp[x]);
}
inline void prework(int u, int fa){
pa[u] = fa, dep[u] = dep[fa] + 1, dis[u] = dis[fa] + d[u];
for(int i = 0; i < (int) g[u].size(); i++)
if(g[u][i] != fa) prework(g[u][i], u);
}
inline void getsize(int u, int fa){
int mson = 0; sz[u] = 1;
for(int i = 0; i < (int) g[u].size(); i++){
int v = g[u][i];
if(vis[v] || v == fa) continue;
getsize(v, u), sz[u] += sz[v];
if(sz[v] > mson) mson = sz[v];
}
mson = max(mson, all - sz[u]);
if(mson < mn) mn = mson, rt = u;
}
inline void dfs(int u, int fa){
A[++cnt] = u;
for(int i = 0; i < (int) g[u].size(); i++)
if(!vis[g[u][i]] && g[u][i] != fa) dfs(g[u][i], u);
}
inline void divtree(int u, int top){
vis[u] = 1; int lst = all;
for(int i = 0; i < (int) g[u].size(); i++){
int v = g[u][i];
if(!vis[v] && v == pa[u]){
mn = all = sz[v] > sz[u] ? lst - sz[u] : sz[v];
getsize(v, u), divtree(rt, top);
}
}
for(int s = pa[u]; s != pa[top]; s = pa[s])
if(dis[u] - dis[s] <= lim[u]) update(u, s);
cnt = 0;
for(int i = 0; i < (int) g[u].size(); i++){
int v = g[u][i];
if(!vis[v]) dfs(v, u);
}
sort(A + 1, A + cnt + 1, cmp);
int t = 0; int s = u;
for(int i = 1; i <= cnt; i++){
while(s != pa[top] && dis[A[i]] - lim[A[i]] <= dis[s]){
while(t > 1 && slope(Q[t-1], Q[t]) <= slope(Q[t-1], s)) t--;
Q[++t] = s, s = pa[s];
}
int l = 1, r = t - 1, res = 1;
while(l <= r){
int mid = (l + r) >> 1;
if(slope(Q[mid], Q[mid+1]) >= (double) p[A[i]])
res = l = mid + 1;
else r = mid - 1;
}
if(res <= t) update(A[i], Q[res]);
}
for(int i = 0; i < (int) g[u].size(); i++){
int v = g[u][i];
if(vis[v]) continue;
mn = all = sz[v] > sz[u] ? lst - sz[u] : sz[v];
getsize(v, u), divtree(rt, v);
}
}
signed main(){
read(n); int type; read(type);
for(int i = 2, x; i <= n; i++){
read(x), read(d[i]), read(p[i]);
read(q[i]), read(lim[i]), dp[i] = inf;
g[x].push_back(i), g[i].push_back(x);
}
prework(1, 0);
mn = all = n, getsize(1, 0), divtree(rt, 1);
for(int i = 2; i <= n; i++) printf("%lld\n", dp[i]);
return 0;
}

「NOI2014」购票的更多相关文章

  1. 「NOI2014」购票 解题报告

    「NOI2014」购票 写完了后发现写的做法是假的...然后居然过了,然后就懒得管正解了. 发现需要维护凸包,动态加点,询问区间,强制在线 可以二进制分组搞,然后你发现在树上需要资瓷撤回,然后暴力撤回 ...

  2. LOJ#2249 Luogu P2305「NOI2014」购票

    几乎肝了半个下午和整个晚上 斜率优化的模型好多啊... LOJ #2249 Luogu P2305 题意 给定一棵树,第$ i$个点如果离某个祖先$ x$的距离不超过$ L_i$,可以花费$ P_i· ...

  3. LOJ 2249: 洛谷 P2305: 「NOI2014」购票

    题目传送门:LOJ #2249. 题意简述: 有一棵以 \(1\) 号节点为根节点的带边权的树. 除了 \(1\) 号节点的所有节点上都有人需要坐车到达 \(1\) 号节点. 除了 \(1\) 号节点 ...

  4. LOJ 2249: 洛谷 P2305: bzoj 3672: 「NOI2014」购票

    题目传送门:LOJ #2249. 题意简述: 有一棵以 \(1\) 号节点为根节点的带边权的树. 除了 \(1\) 号节点的所有节点上都有人需要坐车到达 \(1\) 号节点. 除了 \(1\) 号节点 ...

  5. 【LOJ】#2244. 「NOI2014」起床困难综合症

    题解 写水题放松一下心情 二进制有个很好的性质是每一位是独立的,我们按位贪心,先看这一位能不能填1,然后看看如果这一位填0那么运算后最后这一位是不是1,是的话就退出,然后看看这一位如果填1最后是1这一 ...

  6. 「NOI2014」魔法森林

    题目链接 戳我 \(Solution\) 两个变量,emm...不好搞啊. 于是我们可以按照\(A\)排序.然后动态加边,因为\(A\)是越来越大,所以不需要管他,只要使得\(1\)~\(n\)的路径 ...

  7. LOJ#2244. 「NOI2014」起床困难综合症

    $n \leq 1e5$个位运算操作,$m \le 2^{30}$,问$0-m$中谁进行完所有操作值最大,输出这个最大值. cfA题难度?当送分题就不管了 and相当于几个位取0,or相当于几个位取1 ...

  8. 「NOI2014」动物园

    link : https://loj.ac/problem/2246 水水KMP #include<bits/stdc++.h> #define ll long long #define ...

  9. LG2375/LOJ2246 「NOI2014」动物园 KMP改造

    问题描述 LG2375 LOJ2246 题解 看了题解,需要回看,需要继续通过本题深入理解KMP. 为了将 \(\mathrm{KMP}\) 和只插入了一个模式串的\(\mathrm{AC}\)自动机 ...

随机推荐

  1. 【bzoj题解】2186 莎拉公主的困惑

    题目传送门. 题意:求\([1,n!]\)中与\(m!\)互质的数的个数,对质数\(R\)取模,\(n\geq m\). 答案应该等于\(\frac{n!}{m!}\phi(m!)=\frac{n!} ...

  2. 【codeforces】【比赛题解】#868 CF Round #438 (Div.1+Div.2)

    这次是Div.1+Div.2,所以有7题. 因为时间较早,而且正好赶上训练,所以机房开黑做. 然而我们都只做了3题.:(. 链接. [A]声控解锁 题意: Arkady的宠物狗Mu-mu有一只手机.它 ...

  3. Wood Cut

    Given n pieces of wood with length L[i] (integer array). Cut them into small pieces to guarantee you ...

  4. Vagrant 无法校验手动下载的 Homestead Box 版本

    起因 4年前电脑,配置不太好了,现有的 Homestead 运行起来太吃内存.在修改了 Homestead.yaml 文件里 memory 选项的内存配置为 1024 后,应用最新配置重启失败. 索性 ...

  5. bzoj 1607 Patting Heads 轻拍牛头

    题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1607 题解: 题目似乎出错,应为“同时拍打所有所持纸条上的数字能被此牛所持纸条上的数字整除 ...

  6. linux终端操作快捷键

    终端操作快捷键: 新建家目录下终端窗口:Ctrl+Alt+t在当期当前路径下新建终端窗口:Ctrl+Shift+n退出终端窗口:Ctrl+Shift+q 多个终端窗口之间相互切换:Tab+Alt 终端 ...

  7. Flask:abort()函数

    Windows 10家庭中文版,Python 3.6.4,Flask 1.0.2 abort()函数用于提前退出(Google翻译abort)一个请求,并用指定的错误码返回. 函数原型如下: flas ...

  8. 线性表应用--Josephus问题的解法(Python 版)

    线性表应用 --Josephus问题的解法(Python 版) Josephus问题描述:假设有n个人围坐一圈,现在要求从第k个人开始报数,报到第m个数的人退出.然后从下一个人开始继续报数并按照相同的 ...

  9. python基础--json,pickle和shelve模块

    一.JSON &pickle 用于序列化的两个模块 json,用于字符串 和 python数据类型间进行转换  字符串必须是双引号,不能是单引号 pickle,用于python特有的类型 和 ...

  10. Ibatis.Net 各类的作用说明学习(三)

    Ibatis中,加载.分析配置及映射文件是在创建SqlMapper实例的时候进行的,另外对数据库的操作,也是在SqlMapper实例上调用方法来完成.创建SqlMapper的实例的方式是: ISqlM ...