BZOJ 2118 墨墨的等式(最短路)
【题目链接】 http://www.lydsy.com/JudgeOnline/problem.php?id=2118
【题目大意】
求a1x1+a2y2+…+anxn=B在B的取值范围,有多少B可以使等式存在非负整数解。
【题解】
同余最短路,不等式解集计数即可。
【代码】
#include <cstdio>
#include <algorithm>
#include <queue>
using namespace std;
const int N=500010;
namespace DIJKSTRA{
typedef long long LL;
const LL INF=0x3f3f3f3f3f3f3f3f;
typedef pair<LL,int>P;
priority_queue<P,vector<P>,greater<P> >Q;
int a[N],n,m; LL d[N];
void Initialize(){
int x,i;
sort(a,a+n); m=a[0]; d[0]=0;
for(i=1;i<m;i++)d[i]=INF;Q.push(P(0,0));
while(!Q.empty()){
P t=Q.top();Q.pop();
if(d[t.second]<t.first)continue;
for(x=t.second,i=1;i<n;i++){
if(d[x]+a[i]<d[(x+a[i])%m])Q.push(P(d[(x+a[i])%m]=d[x]+a[i],(x+a[i])%m));
}
}
}
LL Query(LL x){
LL res=0;
for(int i=0;i<m;i++)if(d[i]<=x)res+=(x-d[i])/m+1;
return res;
}
}
long long L,R;
int main(){
using namespace DIJKSTRA;
scanf("%d%lld%lld",&n,&L,&R);
for(int i=0;i<n;i++)scanf("%d",&a[i]);
Initialize();
printf("%lld\n",Query(R)-Query(L-1));
return 0;
}
BZOJ 2118 墨墨的等式(最短路)的更多相关文章
- 【BZOJ 2118】 墨墨的等式(Dijkstra)
BZOJ2118 墨墨的等式 题链:http://www.lydsy.com/JudgeOnline/problem.php?id=2118 Description 墨墨突然对等式很感兴趣,他正在研究 ...
- 【BZOJ 2118】墨墨的等式
http://www.lydsy.com/JudgeOnline/problem.php?id=2118 最短路就是为了找到最小的$x$满足$x=k×a_{min}+d,0≤d<a_{min}$ ...
- bzoj 2118 墨墨的等式 - 图论最短路建模
墨墨突然对等式很感兴趣,他正在研究a1x1+a2y2+…+anxn=B存在非负整数解的条件,他要求你编写一个程序,给定N.{an}.以及B的取值范围,求出有多少B可以使等式存在非负整数解. Input ...
- 【BZOJ 2118】 2118: 墨墨的等式 (最短路)
2118: 墨墨的等式 Description 墨墨突然对等式很感兴趣,他正在研究a1x1+a2y2+…+anxn=B存在非负整数解的条件,他要求你编写一个程序,给定N.{an}.以及B的取值范围,求 ...
- [图论训练]BZOJ 2118: 墨墨的等式 【最短路】
Description 墨墨突然对等式很感兴趣,他正在研究a1x1+a2y2+…+anxn=B存在非负整数解的条件,他要求你编写一个程序,给定N.{an}.以及B的取值范围,求出有多少B可以使等式存在 ...
- 数论+spfa算法 bzoj 2118 墨墨的等式
2118: 墨墨的等式 Time Limit: 10 Sec Memory Limit: 259 MBSubmit: 1283 Solved: 496 Description 墨墨突然对等式很感兴 ...
- bzoj 2118: 墨墨的等式 spfa
题目: 墨墨突然对等式很感兴趣,他正在研究\(a_1x_1+a_2y_2+ ... +a_nx_n=B\)存在非负整数解的条件,他要求你编写一个程序,给定\(N,\{a_n\}\)以及\(B\)的取值 ...
- bzoj 2118: 墨墨的等式
Description 墨墨突然对等式很感兴趣,他正在研究a1x1+a2y2+-+anxn=B存在非负整数解的条件,他要求你编写一个程序,给定N.{an}.以及B的取值范围,求出有多少B可以使等式存在 ...
- 【BZOJ2118】墨墨的等式(最短路)
[BZOJ2118]墨墨的等式(最短路) 题面 BZOJ 洛谷 题解 和跳楼机那题是一样的. 只不过走的方式从\(3\)种变成了\(n\)种而已,其他的根本没有区别了. #include<ios ...
- BZOJ2118墨墨的等式[数论 最短路建模]
2118: 墨墨的等式 Time Limit: 10 Sec Memory Limit: 259 MBSubmit: 1317 Solved: 504[Submit][Status][Discus ...
随机推荐
- leetcode之 两数之和
# -*- coding: utf-8 -*- # @Time : 2018/9/27 21:41 # @Author : cxa # @File : twonum.py # @Software: P ...
- 关于分布式存储系统中-CAP原则(CAP定理)与BASE理论比较
CAP原则又称CAP定理,指的是在一个分布式系统中, Consistency(一致性). Availability(可用性).Partition tolerance(分区容错性),三者不可得兼. CA ...
- 实现checkebox全选取消操作
方法一: javascript代码: function checkedChild(obj,index){ var checkBoxs = document.getElementsByName(&quo ...
- jquery记忆笔记
1.javascript需要注意的一些问题: ①不要使用==比较,始终坚持使用===比较. false == 0; // true false === 0; // false ②NaN这个特殊的Num ...
- mybatis 控制台打印sql脚本
在mybatis-config.xml文件中加一句 <setting name="logImpl" value="STDOUT_LOGGING" /> ...
- 手淘移动适配方案flexible.js兼容bug处理
什么是flexible.js 移动端自适应方案 https://www.jianshu.com/p/04efb4a1d2f8 什么是rem 这个单位代表根元素的 font-size 大小(例如 元素的 ...
- Java HashCode详解
一.为什么要有Hash算法 Java中的集合有两类,一类是List,一类是Set.List内的元素是有序的,元素可以重复.Set元素无序,但元素不可重复.要想保证元素不重复,两个元素是否重复应该依据什 ...
- 洛谷P1342请柬
传送门啦 核心思想:两遍最短路. 1号点去各地的时间直接套最短路模板,各地到1号点时间用逆向思维,视为求1号点沿反边到各地的时间即可. #include <iostream> #inclu ...
- 洛谷P1195口袋的天空
传送门啦 一个裸的最小生成树,输出 $ No Answer $ 的情况只有 $ k < n $ 的时候. 开始令 $ num =n $ ,如果 $ num = k $ ,直接输出 $ 0 $ , ...
- Luogu P3384 【【模板】树链剖分】
转载请注明出处,部分内容引自banananana大神的博客 ~~别说你不知道什么是树~~╮(─▽─)╭(帮你百度一下) 先来回顾两个问题:1,将树从x到y结点最短路径上所有节点的值都加上z 这也是个模 ...