题目链接

显然先建圆方树,方点权值为0圆点权值为1,两点间的答案就是路径权值和减去起点终点。

对于询问,显然可以建虚树。但是只需要计算两关键点间路径权值,所以不需要建出虚树。统计DFS序相邻的两关键点间路径权值,最后除以2就好了。

因为这个前缀和统计不到根节点,所以要加上当前虚树的根节点的权值,即(LCA(A1,AK)<=n)。

话说这是二轮的题啊??

为什么我当时不知道圆方树和虚树→_→而且怎么好多人都不知道的样子。。

//36624kb	4516ms
#include <cstdio>
#include <cctype>
#include <cstring>
#include <algorithm>
//#define gc() getchar()
#define MAXIN 200000
#define gc() (SS==TT&&(TT=(SS=IN)+fread(IN,1,MAXIN,stdin),SS==TT)?EOF:*SS++)
const int N=(2e5+5)*2; int n,m,tot,K,A[N],Index,dfn[N],low[N],sk[N],top,sum[N],tp[N],dep[N],son[N],fa[N],sz[N];
char IN[MAXIN],*SS=IN,*TT=IN;
struct Graph
{
int Enum,H[N],nxt[N],to[N]; void Init(){
Enum=0, memset(H,0,sizeof H);
}
inline void Add_direct(int u,int v){
to[++Enum]=v, nxt[Enum]=H[u], H[u]=Enum;
}
inline void AddEdge(int u,int v){
to[++Enum]=v, nxt[Enum]=H[u], H[u]=Enum, to[++Enum]=u, nxt[Enum]=H[v], H[v]=Enum;
}
}G,T; inline int read()
{
int now=0;register char c=gc();
for(;!isdigit(c);c=gc());
for(;isdigit(c);now=now*10+c-'0',c=gc());
return now;
}
inline bool cmp_dfn(const int &a,const int &b){
return dfn[a]<dfn[b];
}
void Tarjan(int x)
{
low[x]=dfn[x]=++Index, sk[++top]=x;
for(int v,i=G.H[x]; i; i=G.nxt[i])
if(!dfn[v=G.to[i]])
{
fa[v]=x, Tarjan(v), low[x]=std::min(low[x],low[v]);
if(dfn[x]<=low[v])
{
T.Add_direct(x,++tot);
do{
T.Add_direct(tot,sk[top--]);
}while(sk[top+1]!=v);
}
}
else low[x]=std::min(low[x],dfn[v]);
}
void DFS1(int x)
{
int mx=0; sz[x]=1;
for(int v,i=T.H[x]; i; i=T.nxt[i])
{
fa[v=T.to[i]]=x, dep[v]=dep[x]+1, sum[v]=sum[x]+(v<=n), DFS1(v), sz[x]+=sz[v];
if(sz[v]>mx) mx=sz[v], son[x]=v;
}
}
void DFS2(int x,int _tp)
{
tp[x]=_tp, dfn[x]=++Index;
if(son[x])
{
DFS2(son[x],_tp);
for(int v,i=T.H[x]; i; i=T.nxt[i])
if((v=T.to[i])!=son[x]) DFS2(v,v);
}
}
inline int LCA(int u,int v)
{
while(tp[u]!=tp[v]) dep[tp[u]]>dep[tp[v]]?u=fa[tp[u]]:v=fa[tp[v]];
return dep[u]<dep[v]?u:v;
}
inline int Sum(int u,int v){
return sum[u]+sum[v]-(sum[LCA(u,v)]<<1);
} int main()
{
int Case=read();
while(Case--)
{
tot=n=read(), m=read(), G.Init(), T.Init(), Index=top=0;
memset(son,0,sizeof son), memset(dfn,0,sizeof dfn);//清空这俩啊!!
for(int i=1; i<=m; ++i) G.AddEdge(read(),read());
Tarjan(1), /*sum[1]=1,*/ dep[1]=0, DFS1(1), Index=0, DFS2(1,1);
int Q=read();
while(Q--)
{
K=read();
for(int i=1; i<=K; ++i) A[i]=read();
std::sort(A+1,A+1+K,cmp_dfn);
int ans=0;
for(int i=1; i<K; ++i) ans+=Sum(A[i],A[i+1]);
printf("%d\n",(ans+Sum(A[1],A[K]))/2-K+(LCA(A[1],A[K])<=n));
}
}
return 0;
}

BZOJ.5329.[SDOI2018]战略游戏(圆方树 虚树)的更多相关文章

  1. bzoj5315/luoguP4517 [SDOI2018]战略游戏(圆方树,虚树)

    bzoj5315/luoguP4517 [SDOI2018]战略游戏(圆方树,虚树) bzoj Luogu 题目描述略(太长了) 题解时间 切掉一个点,连通性变化. 上圆方树. $ \sum |S| ...

  2. [SDOI2018]战略游戏 圆方树,树链剖分

    [SDOI2018]战略游戏 这题是道路相遇(题解)的升级版,询问的两个点变成了\(S\)个点. LG传送门 还是先建出圆方树,考虑对于询问的\(S\)个点,答案就是圆方树上能包含这些点的最小连通块中 ...

  3. BZOJ5329:[SDOI2018]战略游戏(圆方树,虚树)

    Description 省选临近,放飞自我的小Q无心刷题,于是怂恿小C和他一起颓废,玩起了一款战略游戏. 这款战略游戏的地图由n个城市以及m条连接这些城市的双向道路构成,并且从任意一个城市出发总能沿着 ...

  4. Luogu4606 SDOI2018 战略游戏 圆方树、虚树、链并

    传送门 弱化版 考虑到去掉一个点使得存在两个点不连通的形式类似割点,不难想到建立圆方树.那么在圆方树上对于给出的关键点建立虚树之后,我们需要求的就是虚树路径上所有圆点的数量减去关键点的数量. 因为没有 ...

  5. Luogu P4606 [SDOI2018] 战略游戏 圆方树 虚树

    https://www.luogu.org/problemnew/show/P4606 把原来的图的点双联通分量缩点(每个双联通分量建一个点,每个割点再建一个点)(用符合逻辑的方式)建一棵树(我最开始 ...

  6. bzoj 5329: [Sdoi2018]战略游戏

    Description 省选临近,放飞自我的小Q无心刷题,于是怂恿小C和他一起颓废,玩起了一款战略游戏. 这款战略游戏的地图由n个城市以及m条连接这些城市的双向道路构成,并且从任意一个城市出发总能沿着 ...

  7. 【SDOI2018】战略游戏(同时普及虚树)

    先看一道虚树普及题:给你一棵 $n$ 个点的树,$m$ 次询问,每次询问给你 $k$ 个关键点,求把这些点都连起来的路径并的最短长度.$1\le n,m\le 100000,\space 1\le \ ...

  8. [SDOI2018]战略游戏(圆方树+虚树)

    喜闻乐见的圆方树+虚树 图上不好做,先建出圆方树. 然后答案就是没被选到的且至少有两条边可以走到被选中的点的圆点的数量. 语文不好,但结论画画图即可得出. 然后套路建出虚树. 发现在虚树上DP可以得出 ...

  9. 仙人掌 && 圆方树 && 虚树 总结

    仙人掌 && 圆方树 && 虚树 总结 Part1 仙人掌 定义 仙人掌是满足以下两个限制的图: 图完全联通. 不存在一条边处在两个环中. 其中第二个限制让仙人掌的题做 ...

随机推荐

  1. JS设计模式——9.组合模式

    组合模式概述 组合模式是一种专为创建Web上的动态用户界面量身定制的模式.使用这种模式可以用一条命令在多个对象上激发复杂的递归的行为. 它可以用来把一批子对象组织成树形结构,并且使整棵树都可被遍历.所 ...

  2. centos 安装memcache服务后memcahce本机连接Permission

    自己手动在虚拟机下装了下memcache,整个过程真是充满波折,本身用php5.3安装memcache扩展就麻烦很多,无法通过yum直接安装,安装方法详见http://chenwei.me/blog/ ...

  3. linux系统编程之信号:信号发送函数sigqueue和信号安装函数sigaction

    信号发送函数sigqueue和信号安装函数sigaction sigaction函数用于改变进程接收到特定信号后的行为. sigqueue()是比较新的发送信号系统调用,主要是针对实时信号提出的(当然 ...

  4. MySQL 5.7以后怎么查看索引使用情况?

    MySQL 5.7以后怎么查看索引使用情况? 0.在sys库中查看没用的索引 root@localhost [sys]>select * from schema_unused_indexes; ...

  5. Django Rest Framework----ModelViewSet视图 ModelViewSet源码分析

    一.视图类 #bookview是一个视图类,继承自ModelViewSet class BookView(ModelViewSet): throttle_classes = [VisitThrottl ...

  6. nfs挂载出错:mount.nfs: access denied by server while mounting

    这个问题就是服务器不允许客户端去挂载,那么修改服务端的权限 $ sudo vi /etc/hosts.deny 文本末添加 ### NFS DAEMONS portmap: ALL lockd: AL ...

  7. 如何成为技术大牛——阿里CodeLife

    天天写业务代码的程序员,怎么成为技术大牛,开始写技术代码? 几个误区 跟着大牛,就可以成为大牛.首先,大牛时间很宝贵,不可能花很多时间去指导你:其次,简单的模仿大牛,只能学到表面知识,不可能成为大牛: ...

  8. python网络编程--线程锁(互斥锁Mutex)

    一:为什么需要线程锁 一个进程下可以启动多个线程,多个线程共享父进程的内存空间,也就意味着每个线程可以访问同一份数据,此时,如果2个线程同时要修改同一份数据,会出现什么状况? 很简单,假设你有A,B两 ...

  9. JS中精选this关键字的指向规律你记住了吗

      1.首先要明确:           谁最终调用函数,this指向谁           this指向的永远只可能是对象!!!!!          this指向谁永远不取决于this写在哪,而取 ...

  10. web文件<async-supported>错误分析

    <async-supported>true</async-supported> 出现 cvc-complex-type.2.4.a: Invalid content was f ...