BZOJ.5329.[SDOI2018]战略游戏(圆方树 虚树)
显然先建圆方树,方点权值为0圆点权值为1,两点间的答案就是路径权值和减去起点终点。
对于询问,显然可以建虚树。但是只需要计算两关键点间路径权值,所以不需要建出虚树。统计DFS序相邻的两关键点间路径权值,最后除以2就好了。
因为这个前缀和统计不到根节点,所以要加上当前虚树的根节点的权值,即(LCA(A1,AK)<=n)。
话说这是二轮的题啊??
为什么我当时不知道圆方树和虚树→_→而且怎么好多人都不知道的样子。。
//36624kb 4516ms
#include <cstdio>
#include <cctype>
#include <cstring>
#include <algorithm>
//#define gc() getchar()
#define MAXIN 200000
#define gc() (SS==TT&&(TT=(SS=IN)+fread(IN,1,MAXIN,stdin),SS==TT)?EOF:*SS++)
const int N=(2e5+5)*2;
int n,m,tot,K,A[N],Index,dfn[N],low[N],sk[N],top,sum[N],tp[N],dep[N],son[N],fa[N],sz[N];
char IN[MAXIN],*SS=IN,*TT=IN;
struct Graph
{
int Enum,H[N],nxt[N],to[N];
void Init(){
Enum=0, memset(H,0,sizeof H);
}
inline void Add_direct(int u,int v){
to[++Enum]=v, nxt[Enum]=H[u], H[u]=Enum;
}
inline void AddEdge(int u,int v){
to[++Enum]=v, nxt[Enum]=H[u], H[u]=Enum, to[++Enum]=u, nxt[Enum]=H[v], H[v]=Enum;
}
}G,T;
inline int read()
{
int now=0;register char c=gc();
for(;!isdigit(c);c=gc());
for(;isdigit(c);now=now*10+c-'0',c=gc());
return now;
}
inline bool cmp_dfn(const int &a,const int &b){
return dfn[a]<dfn[b];
}
void Tarjan(int x)
{
low[x]=dfn[x]=++Index, sk[++top]=x;
for(int v,i=G.H[x]; i; i=G.nxt[i])
if(!dfn[v=G.to[i]])
{
fa[v]=x, Tarjan(v), low[x]=std::min(low[x],low[v]);
if(dfn[x]<=low[v])
{
T.Add_direct(x,++tot);
do{
T.Add_direct(tot,sk[top--]);
}while(sk[top+1]!=v);
}
}
else low[x]=std::min(low[x],dfn[v]);
}
void DFS1(int x)
{
int mx=0; sz[x]=1;
for(int v,i=T.H[x]; i; i=T.nxt[i])
{
fa[v=T.to[i]]=x, dep[v]=dep[x]+1, sum[v]=sum[x]+(v<=n), DFS1(v), sz[x]+=sz[v];
if(sz[v]>mx) mx=sz[v], son[x]=v;
}
}
void DFS2(int x,int _tp)
{
tp[x]=_tp, dfn[x]=++Index;
if(son[x])
{
DFS2(son[x],_tp);
for(int v,i=T.H[x]; i; i=T.nxt[i])
if((v=T.to[i])!=son[x]) DFS2(v,v);
}
}
inline int LCA(int u,int v)
{
while(tp[u]!=tp[v]) dep[tp[u]]>dep[tp[v]]?u=fa[tp[u]]:v=fa[tp[v]];
return dep[u]<dep[v]?u:v;
}
inline int Sum(int u,int v){
return sum[u]+sum[v]-(sum[LCA(u,v)]<<1);
}
int main()
{
int Case=read();
while(Case--)
{
tot=n=read(), m=read(), G.Init(), T.Init(), Index=top=0;
memset(son,0,sizeof son), memset(dfn,0,sizeof dfn);//清空这俩啊!!
for(int i=1; i<=m; ++i) G.AddEdge(read(),read());
Tarjan(1), /*sum[1]=1,*/ dep[1]=0, DFS1(1), Index=0, DFS2(1,1);
int Q=read();
while(Q--)
{
K=read();
for(int i=1; i<=K; ++i) A[i]=read();
std::sort(A+1,A+1+K,cmp_dfn);
int ans=0;
for(int i=1; i<K; ++i) ans+=Sum(A[i],A[i+1]);
printf("%d\n",(ans+Sum(A[1],A[K]))/2-K+(LCA(A[1],A[K])<=n));
}
}
return 0;
}
BZOJ.5329.[SDOI2018]战略游戏(圆方树 虚树)的更多相关文章
- bzoj5315/luoguP4517 [SDOI2018]战略游戏(圆方树,虚树)
bzoj5315/luoguP4517 [SDOI2018]战略游戏(圆方树,虚树) bzoj Luogu 题目描述略(太长了) 题解时间 切掉一个点,连通性变化. 上圆方树. $ \sum |S| ...
- [SDOI2018]战略游戏 圆方树,树链剖分
[SDOI2018]战略游戏 这题是道路相遇(题解)的升级版,询问的两个点变成了\(S\)个点. LG传送门 还是先建出圆方树,考虑对于询问的\(S\)个点,答案就是圆方树上能包含这些点的最小连通块中 ...
- BZOJ5329:[SDOI2018]战略游戏(圆方树,虚树)
Description 省选临近,放飞自我的小Q无心刷题,于是怂恿小C和他一起颓废,玩起了一款战略游戏. 这款战略游戏的地图由n个城市以及m条连接这些城市的双向道路构成,并且从任意一个城市出发总能沿着 ...
- Luogu4606 SDOI2018 战略游戏 圆方树、虚树、链并
传送门 弱化版 考虑到去掉一个点使得存在两个点不连通的形式类似割点,不难想到建立圆方树.那么在圆方树上对于给出的关键点建立虚树之后,我们需要求的就是虚树路径上所有圆点的数量减去关键点的数量. 因为没有 ...
- Luogu P4606 [SDOI2018] 战略游戏 圆方树 虚树
https://www.luogu.org/problemnew/show/P4606 把原来的图的点双联通分量缩点(每个双联通分量建一个点,每个割点再建一个点)(用符合逻辑的方式)建一棵树(我最开始 ...
- bzoj 5329: [Sdoi2018]战略游戏
Description 省选临近,放飞自我的小Q无心刷题,于是怂恿小C和他一起颓废,玩起了一款战略游戏. 这款战略游戏的地图由n个城市以及m条连接这些城市的双向道路构成,并且从任意一个城市出发总能沿着 ...
- 【SDOI2018】战略游戏(同时普及虚树)
先看一道虚树普及题:给你一棵 $n$ 个点的树,$m$ 次询问,每次询问给你 $k$ 个关键点,求把这些点都连起来的路径并的最短长度.$1\le n,m\le 100000,\space 1\le \ ...
- [SDOI2018]战略游戏(圆方树+虚树)
喜闻乐见的圆方树+虚树 图上不好做,先建出圆方树. 然后答案就是没被选到的且至少有两条边可以走到被选中的点的圆点的数量. 语文不好,但结论画画图即可得出. 然后套路建出虚树. 发现在虚树上DP可以得出 ...
- 仙人掌 && 圆方树 && 虚树 总结
仙人掌 && 圆方树 && 虚树 总结 Part1 仙人掌 定义 仙人掌是满足以下两个限制的图: 图完全联通. 不存在一条边处在两个环中. 其中第二个限制让仙人掌的题做 ...
随机推荐
- 结构体变量的sizeof计算
结构体字节对齐准则: 1. 结构体变量的首地址能够被其最宽基本类型成员的大小所整除: 2. 结构体每个成员相对于结构体首地址的偏移量都是当前成员大小的整数倍,如有需要编译器会在成员之间加上填充字节: ...
- 一步一步搭建oracle 11gR2 rac+dg之共享磁盘设置(三)【转】
一步一步在RHEL6.5+VMware Workstation 10上搭建 oracle 11gR2 rac + dg 之共享磁盘准备 (三) 注意:这一步是配置rac的过程中非常重要的一步,很多童鞋 ...
- 安装Visual Studio Scrum 1.0过程模板
近几年里,Scrum变成了相当流行的软件开发方法学.因为它轻量.可迭代且快速等优点,以致于在敏捷开发中极受欢迎.微软甚至将TFS2010自带的MSF Agile5.0过程模板做得像Scrum,开发者们 ...
- CSS锚伪类顺序需注意的几点
CSS锚伪类有以下几种: a:link{color:pink} /*未访问的链接*/ a:visited{color:red} /*已访问的链接*/ a:hover{color:blue} /*鼠标移 ...
- http请求中的中文乱码问题
通过浏览器访问服务器页面和资源时,不可避免地要传送中文字串,如果客户机与服务器不能用同一码表解析字串,肯定会出现各种各样的乱码问题.我总结了几个乱码场景及解决办法,如下 1.服务器上的中文字串被客户端 ...
- sld一张图
- 无需编译app切换线上、测试环境
在咱们测试过程中,经常需要切换测试环境和线上环境.大致有如下几个方案. 一.服务器地址编译到app中 此种方式需要在代码里保存两套配置,一套指向线上,一套指向测试.通过编译参数分别生成测试包.线上包. ...
- POJ 2516 Minimum Cost(拆点+KM完备匹配)
题目链接:http://poj.org/problem?id=2516 题目大意: 第一行是N,M,K 接下来N行:第i行有K个数字表示第i个卖场对K种商品的需求情况 接下来M行:第j行有K个数字表示 ...
- SQL2000数据库修改sa密码
开始——程序——Microsoft SQL Server——企业管理器 2 展开数据库Microsoft SQL Server—— SQL Server组——安全性——登录——双击sa 3 在常规内有 ...
- MySQL学习笔记:exists和in的区别
一.exists函数 表示存在,常常与子查询配合使用. 用于检查子查询是否至少会返回一行数据,该子查询实际上并不返回任何数据,而是返回值True或False. 当子查询返回为真时,则外层查询语句将进行 ...