题目

最小割的可行边和必须边

可行边\((u,v)\)需要满足以下两个条件

  1. 满流

  2. 残量网络中不存在\(u\)到\(v\)的路径

这个挺好理解的呀,如果存在还存在路径的话那么这条边就不会是瓶颈了

必须边\((u,v)\)需要满足的条件

  1. 满流

  2. 残量网络中\(S\)能到达\(u\),\(v\)能到达\(T\)

这样的话\((u,v)\)就成为了唯一的瓶颈了

我们可以直接在残量网络上跑\(tarjan\),只跑没满流的边

如果发现\(u\)和\(v\)不在同一强联通分量里,就说明这是一条可行边

因为\((u,v)\)满流,\((v,u)\)必然存在,在同一连通分量里就说明可以从\(u\)走到\(v\)形成一个环,也就存在\(u\)到\(v\)的路径

如果\(u\)和\(S\)在同一个强联通分量里,\(v\)和\(T\)在同一个强连通分量里,那么说明这是一条必须边,和上面类似

代码

#include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdio>
#include<queue>
#define re register
#define LL long long
#define max(a,b) ((a)>(b)?(a):(b))
#define min(a,b) ((a)<(b)?(a):(b))
const int maxn=4e3+5;
const int inf=1e9;
inline int read() {
char c=getchar();int x=0;while(c<'0'||c>'9') c=getchar();
while(c>='0'&&c<='9') x=(x<<3)+(x<<1)+c-48,c=getchar();return x;
}
std::queue<int> q;
struct E{int v,nxt,f;}e[150000];
int n,m,S,T,cnt,top,p,mid,num=1;
int dfn[maxn],low[maxn],st[maxn],f[maxn];
int head[maxn],d[maxn],cur[maxn],col[maxn];
inline void C(int x,int y,int f) {
e[++num].v=y;e[num].nxt=head[x];
head[x]=num;e[num].f=f;
}
int X[60005],Y[60005],id[60005];
inline void add(int x,int y,int f) {C(x,y,f),C(y,x,0);}
inline int BFS() {
for(re int i=1;i<=n;i++) d[i]=0,cur[i]=head[i];
d[S]=1,q.push(S);
while(!q.empty()) {
int k=q.front();q.pop();
for(re int i=head[k];i;i=e[i].nxt)
if(!d[e[i].v]&&e[i].f) d[e[i].v]=d[k]+1,q.push(e[i].v);
}
return d[T];
}
int dfs(int x,int now) {
if(x==T||!now) return now;
int flow=0,ff;
for(re int& i=cur[x];i;i=e[i].nxt)
if(d[e[i].v]==d[x]+1) {
ff=dfs(e[i].v,min(e[i].f,now));
if(now<=0) continue;
now-=ff,flow+=ff,e[i].f-=ff,e[i^1].f+=ff;
if(!now) break;
}
return flow;
}
void tarjan(int x) {
dfn[x]=low[x]=++cnt;
st[++top]=x;f[x]=1;
for(re int i=head[x];i;i=e[i].nxt) {
if(!e[i].f) continue;
if(!dfn[e[i].v]) tarjan(e[i].v),low[x]=min(low[x],low[e[i].v]);
else if(f[e[i].v]) low[x]=min(low[x],dfn[e[i].v]);
}
if(dfn[x]==low[x]) {
++p;
do {
mid=st[top--];
f[mid]=0;
col[mid]=p;
}while(x!=mid);
}
}
int main() {
n=read(),m=read();S=read(),T=read();
for(re int z,i=1;i<=m;i++) {
X[i]=read(),Y[i]=read();
z=read();id[i]=num+1;add(X[i],Y[i],z);
}
while(BFS()) dfs(S,inf);
for(re int i=1;i<=n;i++) if(!dfn[i]) tarjan(i);
for(re int i=1;i<=m;i++) {
if(col[X[i]]!=col[Y[i]]&&!e[id[i]].f) putchar('1');
else putchar('0');
putchar(' ');
if(!e[id[i]].f&&col[X[i]]==col[S]&&col[Y[i]]==col[T]) putchar('1');
else putchar('0');
putchar(10);
}
return 0;
}

[AHOI2009]最小割的更多相关文章

  1. P4126 [AHOI2009]最小割

    题目地址:P4126 [AHOI2009]最小割 最小割的可行边与必须边 首先求最大流,那么最小割的可行边与必须边都必须是满流. 可行边:在残量网络中不存在 \(x\) 到 \(y\) 的路径(强连通 ...

  2. 【BZOJ1797】[AHOI2009]最小割(网络流)

    [BZOJ1797][AHOI2009]最小割(网络流) 题面 BZOJ 洛谷 题解 最小割的判定问题,这里就当做记结论吧.(源自\(lun\)的课件) 我们先跑一遍最小割,求出残量网络.然后把所有还 ...

  3. P4126 [AHOI2009]最小割(网络流+tarjan)

    P4126 [AHOI2009]最小割 边$(x,y)$是可行流的条件: 1.满流:2.残量网络中$x,y$不连通 边$(x,y)$是必须流的条件: 1.满流:2.残量网络中$x,S$与$y,T$分别 ...

  4. 洛谷P4126 [AHOI2009]最小割

    题目:洛谷P4126 [AHOI2009]最小割 思路: 结论题 在残余网络上跑tarjan求出所有SCC,记id[u]为点u所在SCC的编号.显然有id[s]!=id[t](否则s到t有通路,能继续 ...

  5. AHOI2009最小割

    1797: [Ahoi2009]Mincut 最小割 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 1072  Solved: 446[Submit] ...

  6. BZOJ1797:[AHOI2009]最小割(最小割)

    Description A,B两个国家正在交战,其中A国的物资运输网中有N个中转站,M条单向道路.设其中第i (1≤i≤M)条道路连接了vi,ui两个中转站,那么中转站vi可以通过该道路到达ui中转站 ...

  7. [AHOI2009]最小割 最小割可行边&必须边

    ~~~题面~~~ 题解: 做这题的时候才知道有最小割可行边和必须边这种东西..... 1,最小割可行边, 意思就是最小割中可能出现的边. 充要条件: 1,满流 2,在残余网络中找不到x ---> ...

  8. [BZOJ1797][AHOI2009]最小割Mincut

    bzoj luogu sol 一条边出现在最小割集中的必要条件和充分条件. 先跑出任意一个最小割,然后在残余网络上跑出\(scc\). 一条边\((u,v)\)在最小割集中的必要条件:\(bel[u] ...

  9. 洛谷$P4126\ [AHOI2009]$最小割 图论

    正解:网络流+$tarjan$ 解题报告: 传送门$QwQ$ $umm$最小割的判定问题$QwQ$,因为并不会做是看的题解才会的,所以也没什么推导过程直接放结论趴$QwQ$ 首先跑个最大流,然后有. ...

随机推荐

  1. JVM内存问题定位

    一.查看机器资源使用状态: 使用top命令,内存占用较高的那个PID对应的进程一般就是JVM了 二.查看Swap状态: 使用free -m 命令,一般内存占用过高会导致swap占用也偏高,看看swap ...

  2. mac 下mongodb connect failed 连接错误

    我是用brew install mongod 安装的 MongoDB shell version v3.4.2connecting to: mongodb://127.0.0.1:270172017- ...

  3. com.android.builder.packaging.DuplicateFileException: Duplicate files copied in APK META-INF/NOTICE

    在将vivo eclipse sdk 迁移 android studio  时候报错 Error:Execution failed for task ':vivosdk:transformResour ...

  4. 应用Python处理空间关系数据

    from osgeo import ogrimport jsonfrom geojson import loads, dumps, Feature, FeatureCollectionfrom sha ...

  5. PS改变图像颜色

    由于写的一个页面主色调变了,里面的一些图标颜色也要相应改变,自己难得重新去psd里面截图,就想着用ps,看能否直接能变换一下图标颜色.其实方法也很简单的. 1:用ps打开需要改变图标颜色的文件,然后选 ...

  6. owin Claims-based认证登录实现

    public override async Task GrantResourceOwnerCredentials(OAuthGrantResourceOwnerCredentialsContext c ...

  7. use ROW_NUMBER() for pagination in Oracle and SQLServer

    ------------------------------------------------------------------------Oracle---------------------- ...

  8. gitlab 启用HTTPS

    NGINX设置 启用HTTPS 警告 Nginx配置会告诉浏览器和客户端,只需在未来24个月通过安全连接与您的GitLab实例进行通信.通过启用HTTPS,您需要至少在24个月内为您的实例提供安全连接 ...

  9. 使用Babel和ES7创建JavaScript模块

    [编者按]本文主要介绍通过 ES7 与 Babel 建立 JavaScript 模块.文章系国内 ITOM 管理平台 OneAPM 工程师编译呈现,以下为正文. 去年,新版的JavaScript发布了 ...

  10. geogebra几何画图工具用法

    1. intersectPath :该命令可以自动“算出”对应多边形的交汇区域 2. 静态文本可以指定到一个对象的中间这样将来动态变化对象大小时也不出现问题 3.export worksheet 4. ...