[HAOI2015]按位或
好神的题啊
我们发现我们求这个东西如果常规\(dp\)的话可以建出一张拓扑图来,但是边的级别高达\(3^n\),转移的时候还要解方程显然不能通过本题
我们考虑神仙的\(min-max\)容斥
设\(Emax(S)\)表示集合\(S\)中最晚出现的那个自己出现的期望时间,\(Emin(S)\)表示集合\(S\)最早出现的那个子集出现的期望时间
我们套上公式
\]
我们考虑\(Emin(T)\)怎么求,显然只需要一个跟\(T\)有交的子集就可以了
于是
\]
发现有交好像不是很好求,我们正难则反一下
求\(1-\sum_{j\cap T= \varnothing }p_j\),考虑到和\(T\)没有交的集合必然是\(T\)的补集的子集,于是我们求一个子集和就好了
回忆\(fwt\)的\(or\)卷积的第一步,我们求出来是\(\sum_{j|i=i}p_j\),就是子集和
于是我们套一个\(fwt\)即可
代码
#include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdio>
#define re register
#define LL long long
#define eps 1e-10
#define max(a,b) ((a)>(b)?(a):(b))
#define min(a,b) ((a)<(b)?(a):(b))
const int maxn=(1<<20)+12;
int n,len,cnt[maxn];
double p[maxn];
inline void Fwtor(double *f) {
for(re int i=2;i<=len;i<<=1)
for(re int ln=i>>1,l=0;l<len;l+=i)
for(re int x=l;x<l+ln;++x)
f[x+ln]+=f[x];
}
inline int check(double a) {return a+eps>0&&a-eps<0;}
int main() {
scanf("%d",&n);len=(1<<n);
for(re int i=0;i<len;i++) scanf("%lf",&p[i]);
Fwtor(p);double ans=0;
for(re int i=1;i<len;i++) {
cnt[i]=cnt[i>>1]+(i&1);
if(check(1.0-p[(len-1)^i])) {
puts("INF");return 0;
}
if(cnt[i]&1) ans+=1.0/(1.0-p[(len-1)^i]);
else ans-=1.0/(1.0-p[(len-1)^i]);
}
printf("%.10lf\n",ans);
return 0;
}
[HAOI2015]按位或的更多相关文章
- 【BZOJ4036】[HAOI2015]按位或 FWT
[BZOJ4036][HAOI2015]按位或 Description 刚开始你有一个数字0,每一秒钟你会随机选择一个[0,2^n-1]的数字,与你手上的数字进行或(c++,c的|,pascal的or ...
- [BZOJ 4036][HAOI2015]按位或
4036: [HAOI2015]按位或 Time Limit: 10 Sec Memory Limit: 256 MBSec Special JudgeSubmit: 746 Solved: 4 ...
- [luogu 3175] [HAOI2015]按位或(min-max容斥+高维前缀和)
[luogu 3175] [HAOI2015]按位或 题面 刚开始你有一个数字0,每一秒钟你会随机选择一个[0,2^n-1]的数字,与你手上的数字进行按位或运算.问期望多少秒后,你手上的数字变成2^n ...
- bzoj4036 / P3175 [HAOI2015]按位或
bzoj4036 / P3175 [HAOI2015]按位或 是一个 min-max容斥 的板子题. min-max容斥 式子: $ \displaystyle max(S) = \sum_{T\su ...
- BZOJ4036 [HAOI2015]按位或 FWT
原文链接https://www.cnblogs.com/zhouzhendong/p/BZOJ4036.html 题目传送门 - BZOJ4036 题意 刚开始你有一个数字 $0$ ,每一秒钟你会随机 ...
- [HAOI2015]按位或(min-max容斥,FWT,FMT)
题目链接:洛谷 题目大意:给定正整数 $n$.一开始有一个数字 $0$,然后每一秒,都有 $p_i$ 的概率获得 $i$ 这个数 $(0\le i< 2^n)$.一秒恰好会获得一个数.每获得一个 ...
- BZOJ 4036: [HAOI2015]按位或 集合幂函数 莫比乌斯变换 莫比乌斯反演
http://www.lydsy.com/JudgeOnline/problem.php?id=4036 http://blog.csdn.net/lych_cys/article/details/5 ...
- HDU4624 Endless Spin 和 HAOI2015 按位或
Endless Spin 给你一段长度为[1..n]的白色区间,每次随机的取一个子区间将这个区间涂黑,问整个区间被涂黑时需要的期望次数. n<=50 题解 显然是min-max容斥,但是n的范围 ...
- [HAOI2015]按位或(容斥+前缀和)
题目描述 刚开始你有一个数字0,每一秒钟你会随机选择一个[0,2^n-1]的数字,与你手上的数字进行或(c++,c的|,pascal 的or)操作.选择数字i的概率是p[i].保证0<=p[i] ...
- luogu P3175 [HAOI2015]按位或
传送门 如果每个位置上的数字的意义是这个位置被加进集合的最早时间,那么我们要求的就是集合中最大数的期望,使用Min-Max容斥,\(E(max(S))=\sum_{T\subset S}(-1)^{| ...
随机推荐
- 532 -数组中的K-diff对
例1: 输入: [3,1,4,1,5],k = 2 输出: 2 说明:阵列中有两个2-diff对,(1,3)和(3,5). 虽然我们在输入中有两个1,但我们应该只返回唯一对的数量. 例2: 输入: ...
- finally 的作用是什么?
在java中finally首先必须使用在所有catch的最后位置, 无论是否抛出异常,finally代码块总是会被执行.就算是没有catch语句同时又抛出异常的情况下,finally代码块任然会被执行 ...
- css-css和html的结合方式(四种结合方式)
(1)在每个HTML标签上面都有一个属性 style,把css和HTML结合在一起 <div style="background-color:red;color:blue;&quo ...
- ecmascript 6 的arguments转数组的代码
- Android 图板之保存图像
(1)为了能适应多种屏幕尺寸的手机,我们在创建图像的时候就要根据用户手机屏幕的宽高像素来创建. (2)该软件将把图形保存到sdcard中,在保存之前,需要检测sdcard是否存在,是否可写入.如通过以 ...
- 网络 Internet 的发展
Internet源于美国军方,那时制定了TCP/IP协议. 互联网的典型应用有:www,FTP,E-mail. WWW:World Wide Web,简称Web,又称全球网.万维网等. 网页,c/s架 ...
- Object toString方法
1.System.out.println()里的参数会自动调用toString方法. package com.mydemo.controller; // 1.getClass().getName() ...
- Acticity的生命周期和启动模式
典型情况下的生命周期 onCreate 表示创建Acticity,在这个方法中可以做一些初始化的操作,如加载界面布局资源,初始化Activity所需的数据 onRestart 表示重新启动Activi ...
- redis介绍(3)RDB和AOF原理解析
简单科普一下redis的概念:(会的可忽略) Redis的概念 redis基于内存的Key Value类型的NoSQL数据库. Redis的特点 1. Redis是一个高性能的Key/Value数据库 ...
- 观察者模式 - Java 实现1(使用JDK内置的Observer模式)
使用JDK内置的观察者模式 1. 可观察者(主题) 被观察的主题继承 Observable 对象, 使用该对象的调用 notifyObservers() 或 notifyObservers(arg) ...