1.loss要规范化,这样就不会受图片大小的影响

2.w、h采用log:比较特殊的是w,hw,h的regression targets使用了log space. 师兄指点说这是为了降低w,hw,h产生的loss的数量级, 让它在loss里占的比重小些, 不至于因为w,hw,h的loss太大而让x,yx,y产生的loss无用

3.当预测值与目标值相差很大时, 梯度容易爆炸, 因为梯度里包含了x−t. 所以rgb在Fast RCNN里提出了SmoothL1Loss.当差值太大时, 原先L2梯度里的x−tx−t被替换成了±1±1, 这样就避免了梯度爆炸, 也就是它更加健壮. 因此L1 loss对噪声(outliers)更鲁棒.

论文原话:"...... L1 loss that is less sensitive to outliers than the L2 loss used in R-CNN and SPPnet."

smoothl1曲线:

https://blog.csdn.net/weixin_35653315/article/details/54571681   非常全面的解释

smooth l1的更多相关文章

  1. 目标检测——Faster R_CNN使用smooth L1作为bbox的回归损失函数原因

    前情提要—— 网上关于目标检测框架——faster r_cnn有太多太好的博文,这是我在组会讲述faster r_cnn这一框架时被人问到的一个点,当时没答上来,于是会下好好百度和搜索一下研究了一下这 ...

  2. L1 loss, L2 loss以及Smooth L1 Loss的对比

    总结对比下\(L_1\) 损失函数,\(L_2\) 损失函数以及\(\text{Smooth} L_1\) 损失函数的优缺点. 均方误差MSE (\(L_2\) Loss) 均方误差(Mean Squ ...

  3. smooth L1损失函数

    当预测值与目标值相差很大时,L2 Loss的梯度为(x-t),容易产生梯度爆炸,L1 Loss的梯度为常数,通过使用Smooth L1 Loss,在预测值与目标值相差较大时,由L2 Loss转为L1  ...

  4. XiangBai——【AAAI2017】TextBoxes_A Fast Text Detector with a Single Deep Neural Network

    XiangBai--[AAAI2017]TextBoxes:A Fast Text Detector with a Single Deep Neural Network 目录 作者和相关链接 方法概括 ...

  5. SSD(Single Shot MultiBox Detector)的安装配置和运行

    下文图文介绍转自watersink的博文SSD(Single Shot MultiBox Detector)不得不说的那些事. 该方法出自2016年的一篇ECCV的oral paper,SSD: Si ...

  6. caffe错误

    一些caffe错误 训练时很快梯度爆炸,loss猛增至nan 如果找不到数据上的原因的话,可以怀疑caffe框架有问题,换用其它版本试试.比如我遇到的问题是在训练时使用了Accuracy层,而该层的实 ...

  7. Bounding-box 回归

    R-CNN系列均训练了Bounding-box回归器来对窗口进行校正,其目标是学习一种转换关系将预测得到的窗口P映射为真实窗口G(Ground truth). 变换方式 可以通过简单的仿射变换以及指数 ...

  8. 论文阅读笔记五十四:Gradient Harmonized Single-stage Detector(CVPR2019)

    论文原址:https://arxiv.org/pdf/1811.05181.pdf github:https://github.com/libuyu/GHM_Detection 摘要 尽管单阶段的检测 ...

  9. 论文阅读笔记五十三:Libra R-CNN: Towards Balanced Learning for Object Detection(CVPR2019)

    论文原址:https://arxiv.org/pdf/1904.02701.pdf github:https://github.com/OceanPang/Libra_R-CNN 摘要 相比模型的结构 ...

随机推荐

  1. JAVA成员变量的隐藏

    一.如果子类与父类中有一个相同名称的成员变量,那么子类的成员变量会不会覆盖父类的成员变量?我们看下在的例子: public class A { public int x=10; } public cl ...

  2. 【 js 模块加载 】【源码学习】深入学习模块化加载(node.js 模块源码)

    文章提纲: 第一部分:介绍模块规范及之间区别 第二部分:以 node.js 实现模块化规范 源码,深入学习. 一.模块规范 说到模块化加载,就不得先说一说模块规范.模块规范是用来约束每个模块,让其必须 ...

  3. xib Nib IB 可视化编程详解

    简单的说,Xib就是拖控件编程,也可以说是可视化编程. 相对于代码,使用IB和xib文件来组织UI,可以省下大量代码和时间,从而得到更快的开发速度. 如果你曾经受到过微软家Visual Basic或者 ...

  4. listview更改选中时item背景色(转)

    默认情况下使用ListView背景色是黑色,选中item的高亮颜色是菊黄色,很多时候不得不自己定义背景色或者背景图 android:cacheColorHint="@android:colo ...

  5. python条件判断和循环

    条件判断 if <条件判断1>: <执行1> elif <条件判断2>: <执行2> elif <条件判断3>: <执行3> e ...

  6. web 应用响应乱码问题

    非西欧语系乱码原因 在没有设置任何内容类型或编码之前,HttpServletResponse使用的字符编码默认是ISO-8859-1.也就是说,如果直接输出中文,在浏览器上就会看到乱码. 有两种方式可 ...

  7. 查看组成一个Index的column有哪些

    下面是创建一个表,并在上面建立一些index的SQL.我们会新建一个用户,然后再那个schema下运行下面的SQL. create table indtest (f1_num number(10)  ...

  8. MYSQL数据类型 表基本操作 表记录增删改 单表查询

    一.数据类型 常用的数据类型如下: 整数:int,bit 小数:decimal 字符串:varchar,char 日期时间: date, time, datetime 枚举类型(enum) 特别说明的 ...

  9. Webservice和EJB

    WebService Web Service也叫XML Web Service WebService是一种可以接收从Internet或者Intranet上的其它系统中传递过来的请求,轻量级的独立的通讯 ...

  10. Ubuntu清理系统垃圾 命令

    请参考: 圾Ubuntu清理系统垃 Ubuntu 16.04提示boot分区空间不足解决办法