sdoi2014-向量集-线段树-二分斜率
注意到线段树一个节点只有满了才会被用到,那时再建ConvexHull就行了。。。
#include <bits/stdc++.h>
using namespace std;
namespace my_useful_tools {
#define rep(_i, _k, _j) for(int _i = _k; _i <= _j; ++_i)
#define reu(_i, _k, _j) for(int _i = _k; _i < _j; ++_i)
#define red(_i, _k, _j) for(int _i = _k; _j <= _i; --_i)
#define foreach(_i, _s) for(typeof(_s.begin()) _i = _s.begin(); _i != _s.end(); ++_i)
#define pb push_back
#define mp make_pair
#define ipir pair<int, int>
#define ivec vector<int>
#define clr(t) memset(t, 0, sizeof t)
#define pse(t, v) memset(t, v, sizeof t)
#define brl puts("")
#define file(x) freopen(#x".in", "r", stdin), freopen(#x".out", "w", stdout)
#define file_hza freopen("input.txt", "r", stdin), freopen("output.txt", "w", stdout);
#define file_gen(x) freopen(#x".in", "w", stdout);
const int INF = 0x3f3f3f3f;
typedef long long LL;
typedef double DB;
inline void pc(char c) { putchar(c); }
template<class T> inline T gcd(T a, T b) { return b == ? a : gcd(b, a % b); }
template<class T> inline void W(T p) { if(p < ) pc('-'), p = -p; if(p / != ) W(p / ); pc('' + p % ); }
template<class T> inline void Wn(T p) { W(p), brl; } template<class T> inline void W(T a, T b) { W(a), pc(' '), W(b); }
template<class T> inline void Wn(T a, T b) { W(a), pc(' '), Wn(b); }
template<class T> inline void W(T a, T b, T c) { W(a), pc(' '), W(b), pc(' '), W(c); }
inline char gchar() { char ret = getchar(); for(; ret == '\n' || ret == '\r' || ret == ' '; ret = getchar()); return ret; }
template<class T> inline void fr(T&ret) { char c = ' '; int flag = ; for(c = getchar(); c != '-' && !('' <= c && c <= ''); c = getchar());
if(c == '-') flag = -, ret = ; else ret = c - ''; for(c = getchar(); '' <= c && c <= ''; c = getchar()) ret = ret * + c - '';
ret = ret * flag;
}
inline int fr() { int x; fr(x); return x; }
template<class T> inline void fr(T&a, T&b) { fr(a), fr(b); } template<class T> inline void fr(T&a, T&b, T&c) { fr(a), fr(b), fr(c); }
template<class T> inline T fast_pow(T base, T index, T mod = , T ret = ) {
for(; index; index >>= , base = base * base % mod) if(index & ) ret = ret * base % mod;
return ret;
}
};
using namespace my_useful_tools; const int maxNode = 1e7;
const int maxQueryNode = 4e5 + ;
const int maxSegNode = (maxQueryNode<<);
struct Point {
int x, y;
Point() {}
Point(int x, int y):x(x), y(y) {}
bool operator < (const Point&rhs) const {
return x < rhs.x || (x==rhs.x && y < rhs.y);
}
Point operator - (const Point&rhs) {
return Point(x-rhs.x, y-rhs.y);
}
} pool[maxNode], *loc = pool, P[maxQueryNode];
LL Dot(Point a, Point b) {
return (LL)a.x*b.x+(LL)a.y*b.y;
}
LL Cross(Point a, Point b) {
return (LL)a.x*b.y-(LL)a.y*b.x;
} struct ConvexHull {
Point *up, *dw;
int un, dn;
void buildConvexHull(Point*p, int sz) {
sort(p, p+sz);
up = loc;
int cnt = -;
reu(i, , sz) {
while (cnt > && Cross(p[i]-up[cnt-], up[cnt]-up[cnt-]) <= )
--cnt;
++cnt, up[cnt] = p[i];
}
loc += cnt+;
un = cnt+;
dw = loc;
cnt = -;
reu(i, , sz) {
while (cnt > && Cross(p[i]-dw[cnt-], dw[cnt]-dw[cnt-]) >= )
--cnt;
++cnt, dw[cnt] = p[i];
}
loc += cnt+;
dn = cnt+;
}
LL qMaxDot(Point p) {
LL ret = LLONG_MIN;
int l = , r = un-;
while (l <= r) {
if (r - l + <= ) {
for (register int i = l; i <= r; ++i) {
ret = max(ret, Dot(up[i], p));
}
break;
}
int mid = (l+r)>>;
if (Dot(up[mid], p) < Dot(up[mid+], p)) {
l = mid+;
} else {
r = mid;
}
}
l = , r = dn-;
while (l <= r) {
if (r - l + <= ) {
for (register int i = l; i <= r; ++i) {
ret = max(ret, Dot(dw[i], p));
}
break;
}
int mid = (l+r)>>;
if (Dot(dw[mid], p) < Dot(dw[mid+], p)) {
l = mid+;
} else {
r = mid;
}
}
// return ret;
// LL tmp = LLONG_MIN;
// for (int i = 0; i < un; ++i)
// tmp = max(tmp, Dot(up[i], p));
// for (int i = 0; i < dn; ++i)
// tmp = max(tmp, Dot(dw[i], p));
return ret;
}
} ch_pool[maxSegNode], *ch_loc = ch_pool; struct SegNode {
SegNode*lc, *rc;
ConvexHull*ch;
int l, r, sz;
SegNode() {
lc = rc = NULL;
ch = ch_loc++;
sz = ;
}
} sn_pool[maxSegNode], *sn_loc = sn_pool, *root; void buildSegTree(int l, int r, SegNode*&rt) {
if (rt == NULL) {
rt = sn_loc++;
rt->l = l, rt->r = r;
}
if (l == r) return ;
int mid = (l+r)>>;
buildSegTree(l, mid, rt->lc), buildSegTree(mid+, r, rt->rc);
} void addPoint(int pos, SegNode*rt) {
if (rt->l == rt->r) {
++rt->sz;
if (rt->sz == rt->r-rt->l+)
rt->ch->buildConvexHull(P+(rt->l), rt->sz);
return ;
}
int mid = (rt->l+rt->r)>>;
if (pos <= mid) addPoint(pos, rt->lc);
else addPoint(pos, rt->rc);
rt->sz = rt->lc->sz+rt->rc->sz;
if (rt->sz == rt->r-rt->l+)
rt->ch->buildConvexHull(P+(rt->l), rt->sz);
} Point qp;
LL Query(int ql, int qr, SegNode*rt) {
if (ql <= rt->l && rt->r <= qr) {
return rt->ch->qMaxDot(qp);
}
int mid = (rt->l+rt->r)>>;
LL ret = LLONG_MIN;
if (ql <= mid) ret = max(ret, Query(ql, qr, rt->lc));
if (mid < qr) ret = max(ret, Query(ql, qr, rt->rc));
return ret;
} int n;
bool e;
LL last_ans = 0LL; inline int decode(int x) {
if (e)
return x ^ (last_ans & 0x7fffffff);
else return x;
} void print_tree(SegNode*rt) {
if (rt == NULL) return ;
printf("%d %d %d\n", rt->l, rt->r, rt->sz);
print_tree(rt->lc);
print_tree(rt->rc);
} int main() {
fr(n), e=(gchar()!='E');
int x, y, ql, qr;
int cnt = ;
buildSegTree(, n, root);
while (n--) {
if (gchar() == 'A') {
x = decode(fr()), y = decode(fr());
P[++cnt] = Point(x, y);
addPoint(cnt, root);
} else {
x = decode(fr()), y = decode(fr());
ql = decode(fr()), qr = decode(fr());
// printf("%d %d %d %d\n", x, y, ql, qr);
qp = Point(x, y);
last_ans = Query(ql, qr, root);
printf("%lld\n", last_ans);
}
// print_tree(root);
} return ;
}
sdoi2014-向量集-线段树-二分斜率的更多相关文章
- BZOJ 3533: [Sdoi2014]向量集( 线段树 + 三分 )
答案一定是在凸壳上的(y>0上凸壳, y<0下凸壳). 线段树维护, 至多N次询问, 每次询问影响O(logN)数量级的线段树结点, 每个结点O(logN)暴力建凸壳, 然后O(logN) ...
- 【bzoj3533】[Sdoi2014]向量集 线段树+STL-vector维护凸包
题目描述 维护一个向量集合,在线支持以下操作:"A x y (|x|,|y| < =10^8)":加入向量(x,y);"Q x y l r (|x|,|y| < ...
- BZOJ3533:[SDOI2014]向量集(线段树,三分,凸包)
Description 维护一个向量集合,在线支持以下操作: "A x y (|x|,|y| < =10^8)":加入向量(x,y); " Q x y l r (| ...
- bzoj 3533 [Sdoi2014]向量集 线段树+凸包+三分(+动态开数组) 好题
题目大意 维护一个向量集合,在线支持以下操作: "A x y (|x|,|y| < =10^8)":加入向量(x,y); "Q x y l r (|x|,|y| & ...
- bzoj 3533: [Sdoi2014]向量集 线段树维护凸包
题目大意: http://www.lydsy.com/JudgeOnline/problem.php?id=3533 题解: 首先我们把这些向量都平移到原点.这样我们就发现: 对于每次询问所得到的an ...
- [SDOI2014][BZOJ3533] 向量集 [线段树+凸包]
题面 BZOJ传送门 思路 首先当然是推式子 对于一个询问点$(x_0,y_0$和给定向量$(x_1,y_1)$来说,点积这么表达: $A=x_0x_1+y_0y_1$ 首先肯定是考虑大小关系:$x_ ...
- bzoj4311向量(线段树分治+斜率优化)
第二道线段树分治. 首先设当前向量是(x,y),剩余有两个不同的向量(u1,v1)(u2,v2),假设u1>u2,则移项可得,若(u1,v1)优于(u2,v2),则-x/y>(v1-v2) ...
- 【BZOJ4311】向量(线段树分治,斜率优化)
[BZOJ4311]向量(线段树分治,斜率优化) 题面 BZOJ 题解 先考虑对于给定的向量集,如何求解和当前向量的最大内积. 设当前向量\((x,y)\),有两个不同的向量\((u1,v1),(u2 ...
- bzoj4399 魔法少女LJJ 线段树合并+线段树二分+并查集
题目传送门 https://lydsy.com/JudgeOnline/problem.php?id=4399 题解 毒瘤题 \(9\) 种操作还有支持动态图的连通性 仔细读题 $ c<=7$. ...
随机推荐
- python的匿名函数 lambda的使用方法详解以及使用案例
1.匿名函数是用lambda这个关键字定义 lambda x:x+1 第一个x代表形参,x+1相当于函数的返回值 #lambda x:x+1 第一个x代表形参,x+1相当于函数的返回值 def ...
- jquery.lazyload插件实现图片延迟加载详解
什么是LazyLoad技术? 在页面上图片比较多的时候,打开一张页面必然引起与服务器大数据量的交互.尤其是对于高清晰的图片,占了几百K的空间.Lazy Load 是一个用 JavaScript 编写的 ...
- Spring整合Quartz定时任务 在集群、分布式系统中的应用
概述 虽然单个Quartz实例能给予你很好的Job调度能力,但它不能满足典型的企业需求,如可伸缩性.高可靠性满足.假如你需要故障转移的能力并能运行日益增多的 Job,Quartz集群势必成为你应用的一 ...
- NOIP2016 组合数问题
https://www.luogu.org/problem/show?pid=2822 题目描述 组合数表示的是从n个物品中选出m个物品的方案数.举个例子,从(1,2,3) 三个物品中选择两个物品可以 ...
- hdu1286 找新朋友
找新朋友 http://acm.hdu.edu.cn/showproblem.php?pid=1286 Time Limit: 2000/1000 MS (Java/Others) Memory ...
- noi题库(noi.openjudge.cn) 1.13编程基础之综合应用 T12 分数求和
12:分数求和 描述 输入n个分数并对他们求和,并用最简形式表示.所谓最简形式是指:分子分母的最大公约数为1:若最终结果的分母为1,则直接用整数表示. 如:5/6.10/3均是最简形式,而3/6需要化 ...
- 容斥 或者 单调栈 hihocoder #1476 : 矩形计数 和 G. Snake Rana 2017 ACM Arabella Collegiate Programming Contest
先说一个简单的题目(题目大意自己看去,反正中文):hihocoder上的:http://hihocoder.com/problemset/problem/1476 然后因为这个n和m的矩阵范围是100 ...
- 如何在Windows系统下隐藏文件
隐藏后只有键入文件夹名称才可访问,如果忘记路径就找不到了 attrib +s +a +h +r e:\bak\tools 取消的方法: attrib -a -s -h -r e:\bak\tools
- 解析XML文件的几种常见操作方法:DOM/SAX/DOM4j
<?xml version="1.0" encoding="utf-8"?> <root> <class name="c ...
- 用phpUnit入门TDD
用phpunit实战TDD系列 从一个银行账户开始 假设你已经 安装了phpunit. 我们从一个简单的银行账户的例子开始了解TDD(Test-Driven-Development)的思想. 在工程目 ...