Spark(十二)SparkSQL简单使用
一、SparkSQL的进化之路
1.0以前: Shark
1.1.x开始:SparkSQL(只是测试性的) SQL
1.3.x: SparkSQL(正式版本)+Dataframe
1.5.x: SparkSQL 钨丝计划
1.6.x: SparkSQL+DataFrame+DataSet(测试版本)
2.x:
- SparkSQL+DataFrame+DataSet(正式版本)
- SparkSQL:还有其他的优化
- StructuredStreaming(DataSet)
Spark on Hive和Hive on Spark
- Spark on Hive: Hive只作为储存角色,Spark负责sql解析优化,执行。
- Hive on Spark:Hive即作为存储又负责sql的解析优化,Spark负责执行。
二、认识SparkSQL
2.1 什么是SparkSQL?
spark SQL是spark的一个模块,主要用于进行结构化数据的处理。它提供的最核心的编程抽象就是DataFrame。
2.2 SparkSQL的作用
提供一个编程抽象(DataFrame) 并且作为分布式 SQL 查询引擎
DataFrame:它可以根据很多源进行构建,包括:结构化的数据文件,hive中的表,外部的关系型数据库,以及RDD
2.3 运行原理
将 Spark SQL 转化为 RDD, 然后提交到集群执行
2.4 特点
(1)容易整合
(2)统一的数据访问方式
(3)兼容 Hive
(4)标准的数据连接
2.5 SparkSession
SparkSession是Spark 2.0引如的新概念。SparkSession为用户提供了统一的切入点,来让用户学习spark的各项功能。
在spark的早期版本中,SparkContext是spark的主要切入点,由于RDD是主要的API,我们通过sparkcontext来创建和操作RDD。对于每个其他的API,我们需要使用不同的context。例如,对于Streming,我们需要使用StreamingContext;对于sql,使用sqlContext;对于Hive,使用hiveContext。但是随着DataSet和DataFrame的API逐渐成为标准的API,就需要为他们建立接入点。所以在spark2.0中,引入SparkSession作为DataSet和DataFrame API的切入点,SparkSession封装了SparkConf、SparkContext和SQLContext。为了向后兼容,SQLContext和HiveContext也被保存下来。
SparkSession实质上是SQLContext和HiveContext的组合(未来可能还会加上StreamingContext),所以在SQLContext和HiveContext上可用的API在SparkSession上同样是可以使用的。SparkSession内部封装了sparkContext,所以计算实际上是由sparkContext完成的。
特点:
---- 为用户提供一个统一的切入点使用Spark 各项功能
---- 允许用户通过它调用 DataFrame 和 Dataset 相关 API 来编写程序
---- 减少了用户需要了解的一些概念,可以很容易的与 Spark 进行交互
---- 与 Spark 交互之时不需要显示的创建 SparkConf, SparkContext 以及 SQlContext,这些对象已经封闭在 SparkSession 中
2.7 DataFrames
在Spark中,DataFrame是一种以RDD为基础的分布式数据集,类似于传统数据库中的二维表格。DataFrame与RDD的主要区别在于,前者带有schema元信息,即DataFrame所表示的二维表数据集的每一列都带有名称和类型。这使得Spark SQL得以洞察更多的结构信息,从而对藏于DataFrame背后的数据源以及作用于DataFrame之上的变换进行了针对性的优化,最终达到大幅提升运行时效率的目标。反观RDD,由于无从得知所存数据元素的具体内部结构,Spark Core只能在stage层面进行简单、通用的流水线优化。
三、RDD转换成为DataFrame
使用spark1.x版本的方式
测试数据目录:spark/examples/src/main/resources(spark的安装目录里面)
people.txt
3.1 通过 case class 创建 DataFrames(反射)
//定义case class,相当于表结构
case class People(var name:String,var age:Int)
object TestDataFrame1 {
def main(args: Array[String]): Unit = {
val conf = new SparkConf().setAppName("RDDToDataFrame").setMaster("local")
val sc = new SparkContext(conf)
val context = new SQLContext(sc)
// 将本地的数据读入 RDD, 并将 RDD 与 case class 关联
val peopleRDD = sc.textFile("E:\\666\\people.txt")
.map(line => People(line.split(",")(0), line.split(",")(1).trim.toInt))
import context.implicits._
// 将RDD 转换成 DataFrames
val df = peopleRDD.toDF
//将DataFrames创建成一个临时的视图
df.createOrReplaceTempView("people")
//使用SQL语句进行查询
context.sql("select * from people").show()
}
}
运行结果
3.2 通过 structType 创建 DataFrames(编程接口)
object TestDataFrame2 {
def main(args: Array[String]): Unit = {
val conf = new SparkConf().setAppName("TestDataFrame2").setMaster("local")
val sc = new SparkContext(conf)
val sqlContext = new SQLContext(sc)
val fileRDD = sc.textFile("E:\\666\\people.txt")
// 将 RDD 数据映射成 Row,需要 import org.apache.spark.sql.Row
val rowRDD: RDD[Row] = fileRDD.map(line => {
val fields = line.split(",")
Row(fields(0), fields(1).trim.toInt)
})
// 创建 StructType 来定义结构
val structType: StructType = StructType(
//字段名,字段类型,是否可以为空
StructField("name", StringType, true) ::
StructField("age", IntegerType, true) :: Nil
)
/**
* rows: java.util.List[Row],
* schema: StructType
* */
val df: DataFrame = sqlContext.createDataFrame(rowRDD,structType)
df.createOrReplaceTempView("people")
sqlContext.sql("select * from people").show()
}
}
运行结果
3.3 通过 json 文件创建 DataFrames
object TestDataFrame3 {
def main(args: Array[String]): Unit = {
val conf = new SparkConf().setAppName("TestDataFrame2").setMaster("local")
val sc = new SparkContext(conf)
val sqlContext = new SQLContext(sc)
val df: DataFrame = sqlContext.read.json("E:\\666\\people.json")
df.createOrReplaceTempView("people")
sqlContext.sql("select * from people").show()
}
}
四、DataFrame的read和save和savemode
4.1 数据的读取
object TestRead {
def main(args: Array[String]): Unit = {
val conf = new SparkConf().setAppName("TestDataFrame2").setMaster("local")
val sc = new SparkContext(conf)
val sqlContext = new SQLContext(sc)
//方式一
val df1 = sqlContext.read.json("E:\\666\\people.json")
val df2 = sqlContext.read.parquet("E:\\666\\users.parquet")
//方式二
val df3 = sqlContext.read.format("json").load("E:\\666\\people.json")
val df4 = sqlContext.read.format("parquet").load("E:\\666\\users.parquet")
//方式三,默认是parquet格式
val df5 = sqlContext.load("E:\\666\\users.parquet")
}
}
4.2 数据的保存
object TestSave {
def main(args: Array[String]): Unit = {
val conf = new SparkConf().setAppName("TestDataFrame2").setMaster("local")
val sc = new SparkContext(conf)
val sqlContext = new SQLContext(sc)
val df1 = sqlContext.read.json("E:\\666\\people.json")
//方式一
df1.write.json("E:\\111")
df1.write.parquet("E:\\222")
//方式二
df1.write.format("json").save("E:\\333")
df1.write.format("parquet").save("E:\\444")
//方式三
df1.write.save("E:\\555") }
}
4.3 数据的保存模式
使用mode
df1.write.format("parquet").mode(SaveMode.Ignore).save("E:\\444")
五、数据源
5.1 数据源只json
参考4.1
5.2 数据源之parquet
参考4.1
5.3 数据源之Mysql
object TestMysql {
def main(args: Array[String]): Unit = {
val conf = new SparkConf().setAppName("TestMysql").setMaster("local")
val sc = new SparkContext(conf)
val sqlContext = new SQLContext(sc) val url = "jdbc:mysql://192.168.123.102:3306/hivedb"
val table = "dbs"
val properties = new Properties()
properties.setProperty("user","root")
properties.setProperty("password","root")
//需要传入Mysql的URL、表明、properties(连接数据库的用户名密码)
val df = sqlContext.read.jdbc(url,table,properties)
df.createOrReplaceTempView("dbs")
sqlContext.sql("select * from dbs").show() }
}
运行结果
5.4 数据源之Hive
(1)准备工作
在pom.xml文件中添加依赖
<!-- https://mvnrepository.com/artifact/org.apache.spark/spark-hive -->
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-hive_2.11</artifactId>
<version>2.3.0</version>
</dependency>
开发环境则把resource文件夹下添加hive-site.xml文件,集群环境把hive的配置文件要发到$SPARK_HOME/conf目录下
<configuration>
<property>
<name>javax.jdo.option.ConnectionURL</name>
<value>jdbc:mysql://localhost:3306/hivedb?createDatabaseIfNotExist=true</value>
<description>JDBC connect string for a JDBC metastore</description>
<!-- 如果 mysql 和 hive 在同一个服务器节点,那么请更改 hadoop02 为 localhost -->
</property>
<property>
<name>javax.jdo.option.ConnectionDriverName</name>
<value>com.mysql.jdbc.Driver</value>
<description>Driver class name for a JDBC metastore</description>
</property>
<property>
<name>javax.jdo.option.ConnectionUserName</name>
<value>root</value>
<description>username to use against metastore database</description>
</property>
<property>
<name>javax.jdo.option.ConnectionPassword</name>
<value>root</value>
<description>password to use against metastore database</description>
</property>
<property>
<name>hive.metastore.warehouse.dir</name>
<value>/hive/warehouse</value>
<description>hive default warehouse, if nessecory, change it</description>
</property>
</configuration>
(2)测试代码
object TestHive {
def main(args: Array[String]): Unit = {
val conf = new SparkConf().setMaster("local").setAppName(this.getClass.getSimpleName)
val sc = new SparkContext(conf)
val sqlContext = new HiveContext(sc)
sqlContext.sql("select * from myhive.student").show()
}
}
运行结果
六、SparkSQL 的元数据
1.1元数据的状态
SparkSQL 的元数据的状态有两种:
1、in_memory,用完了元数据也就丢了
2、hive , 通过hive去保存的,也就是说,hive的元数据存在哪儿,它的元数据也就存在哪儿。
换句话说,SparkSQL的数据仓库在建立在Hive之上实现的。我们要用SparkSQL去构建数据仓库的时候,必须依赖于Hive。
2.2Spark-SQL脚本
如果用户直接运行bin/spark-sql命令。会导致我们的元数据有两种状态:
1、in-memory状态:如果SPARK-HOME/conf目录下没有放置hive-site.xml文件,元数据的状态就是in-memory
2、hive状态:如果我们在SPARK-HOME/conf目录下放置了,hive-site.xml文件,那么默认情况下,spark-sql的元数据的状态就是hive.
Spark(十二)SparkSQL简单使用的更多相关文章
- Spark(十二)【SparkSql中数据读取和保存】
一. 读取和保存说明 SparkSQL提供了通用的保存数据和数据加载的方式,还提供了专用的方式 读取:通用和专用 保存 保存有四种模式: 默认: error : 输出目录存在就报错 append: 向 ...
- salesforce 零基础学习(四十二)简单文件上传下载
项目中,常常需要用到文件的上传和下载,上传和下载功能实际上是对Document对象进行insert和查询操作.本篇演示简单的文件上传和下载,理论上文件上传后应该将ID作为操作表的字段存储,这里只演示文 ...
- python 基础(十二) 图片简单处理
pillow 图片处理模块 安装 pip install pillow pip是安装第三方模块的工具 缩放图片实例 from PIL import Image path = r'C:\Users\x ...
- linux设备驱动归纳总结(十二):简单的数码相框【转】
本文转载自:http://blog.chinaunix.net/uid-25014876-id-116926.html linux设备驱动归纳总结(十二):简单的数码相框 xxxxxxxxxxxxxx ...
- 进击的Python【第十二章】:mysql介绍与简单操作,sqlachemy介绍与简单应用
进击的Python[第十二章]:mysql介绍与简单操作,sqlachemy介绍与简单应用 一.数据库介绍 什么是数据库? 数据库(Database)是按照数据结构来组织.存储和管理数据的仓库,每个数 ...
- 【Linux开发】linux设备驱动归纳总结(十二):简单的数码相框
linux设备驱动归纳总结(十二):简单的数码相框 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx ...
- Spark(十二) -- Spark On Yarn & Spark as a Service & Spark On Tachyon
Spark On Yarn: 从0.6.0版本其,就可以在在Yarn上运行Spark 通过Yarn进行统一的资源管理和调度 进而可以实现不止Spark,多种处理框架并存工作的场景 部署Spark On ...
- Spark2.x(六十二):(Spark2.4)共享变量 - Broadcast原理分析
之前对Broadcast有分析,但是不够深入<Spark2.3(四十三):Spark Broadcast总结>,本章对其实现过程以及原理进行分析. 带着以下几个问题去写本篇文章: 1)dr ...
- CRL快速开发框架系列教程十二(MongoDB支持)
本系列目录 CRL快速开发框架系列教程一(Code First数据表不需再关心) CRL快速开发框架系列教程二(基于Lambda表达式查询) CRL快速开发框架系列教程三(更新数据) CRL快速开发框 ...
- 我的MYSQL学习心得(十二) 触发器
我的MYSQL学习心得(十二) 触发器 我的MYSQL学习心得(一) 简单语法 我的MYSQL学习心得(二) 数据类型宽度 我的MYSQL学习心得(三) 查看字段长度 我的MYSQL学习心得(四) 数 ...
随机推荐
- GetVersionEx 正确获取windows10版本
vs2008直接将下面xml保存成文件添加到资源文件 vc的话insert-->Resource-->Custom-->输入24,ok-->id改为1-->把下面内容保存 ...
- java中的悲观锁和乐观锁实现
悲观锁就是认为并发时一定会有冲突发生,采用互斥的策略.比如java中的synchronized. 而乐观锁是假设并发时不会有冲突发生,如果发生冲突,则操作失败,并不断重试.乐观锁的机制就是CAS(Co ...
- Shell记录-Shell命令(文件查找)
常见解压/压缩命令 tar文件格式解包:tar xvf FileName.tar打包:tar cvf FileName.tar DirName(注:tar是打包,不是压缩!) .gz文件格式解压1:g ...
- PHP官方文档之————secure.php.net.while
while 语句的含意很简单,它告诉 PHP 只要 while 表达式的值为 TRUE 就重复执行嵌套中的循环语句.表达式的值在每次开始循环时检查,所以即使这个值在循环语句中改变了,语句也不会停止执行 ...
- javamail模拟邮箱功能--邮件回复-中级实战篇【邮件回复方法】(javamail API电子邮件实例)
引言: JavaMai下载地址l jar包:http://java.sun.com/products/javamail/downloads/index.html 此篇是紧随上篇文章而封装出来的,阅读本 ...
- ELASTIC SEARCH 安装
elastic search 2017年3月18日 安装&使用 环境 表 1 环境信息 Centos cat /etc/issue CentOS release 6.8 (Final) cat ...
- CentOS 7快速入门系列教程(一)
基本命令 ls 列举当前目录下的所有文件夹 ls -l 查看文件还是文件夹 d表示文件夹 -表示文件 ls --help man ls 询问命令 man 3 malloc 查看函数 cd 跳转 ...
- 悲催的IE6 七宗罪大吐槽(带解决方法)第一部分
一.奇数宽高 悲剧的IE6啊,为何有如此多bug,但用户市场又那么大,真让我们搞网站的纠结.今天就遇到了一个非常奇怪但又很细节的一个bug,一个外部的相对定位div,内部一个绝对定位的div(righ ...
- 20155325 2016-2017-2 《Java程序设计》第7周学习总结
教材学习内容总结 名称 作用 Calendar 设定时间日期等字段 add() 改变Calendar的时间 roll() 针对日期中某个字段加减 getDefault() 取得默认时区信息 教材学习中 ...
- Java内存模型简析
1.多线程基础 线程通信,是指线程之间以何种机制来交换信息.其中通信的机制有两种:内存共享和消息传递.内存共享是指线程之间通过写-读内存中的公共状态隐式进行通讯(Java):消息传递在线程之间没有公共 ...