题解

我一开始写的最小表示法写的插头dp,愉快地TLE成60分

然后我觉得我就去看正解了!

发现是容斥 + 矩阵树定理

矩阵树定理对于有重边的图只要邻接矩阵的边数设置a[u][v]表示u,v之间有几条边就好

我们枚举哪些公司不用,然后用矩阵树求一下生成几棵树,复杂度\(2^{n - 1}(n - 1)^3\)

代码

#include <iostream>
#include <algorithm>
#include <cstdio>
#include <cstring>
#include <vector>
#include <set>
#include <cmath>
#define enter putchar('\n')
#define space putchar(' ')
//#define ivorysi
#define pb push_back
#define MAXN 200005
#define mo 974711
#define pii pair<int,int>
#define mp make_pair
#define fi first
#define se second
using namespace std;
typedef long long int64;
typedef double db;
template<class T>
void read(T &res) {
res = 0;char c = getchar();T f = 1;
while(c < '0' || c > '9') {
if(c == '-') f = -1;
c = getchar();
}
while(c >= '0' && c <= '9') {
res = res * 10 - '0' + c;
c = getchar();
}
res = res * f;
}
template<class T>
void out(T x) {
if(x < 0) {x = -x;putchar('-');}
if(x >= 10) out(x / 10);
putchar('0' + x % 10);
}
const int MOD = 1000000007;
int N,cnt[(1 << 17) + 5],D[18][18],len[25];
pii E[25][505];
int lowbit(int x) {
return x & (-x);
}
int inc(int a,int b) {
return a + b >= MOD ? a + b - MOD : a + b;
}
int mul(int a,int b) {
return 1LL * a * b % MOD;
}
void Init() {
read(N);
int M,u,v;
for(int i = 1 ; i < N ; ++i) {
read(M);len[i] = M;
for(int j = 1 ; j <= M ; ++j) {
read(u);read(v);
E[i][j] = mp(u,v);
}
}
}
int fpow(int x,int c) {
int res = 1,t = x;
while(c) {
if(c & 1) res = mul(res,t);
t = mul(t,t);
c >>= 1;
}
return res;
}
int Guass() {
int res = 1;
for(int i = 2 ; i <= N ; ++i) {
int l = i;
if(!D[l][i]) {
for(int j = i + 1 ; j <= N ; ++j) {
if(D[j][i]) {l = j;break;}
}
}
if(!D[l][i]) return 0;
if(l != i) {
res = -res;
for(int j = i ; j <= N ; ++j) swap(D[l][j],D[i][j]);
}
for(int j = i + 1; j <= N ; ++j) {
int t = mul(D[j][i],fpow(D[i][i],MOD - 2));
for(int k = i ; k <= N ; ++k) {
D[j][k] = inc(D[j][k],MOD - mul(D[i][k],t));
}
}
}
if(res == -1) res = MOD - 1;
for(int i = 2 ; i <= N ; ++i) {
res = mul(res,D[i][i]);
}
return res;
}
int calc(int S) {
memset(D,0,sizeof(D));
for(int i = 1 ; i <= N - 1; ++i) {
if(S >> (i - 1) & 1) {
for(int j = 1 ; j <= len[i] ; ++j) {
D[E[i][j].fi][E[i][j].se] -= 1;
D[E[i][j].se][E[i][j].fi] -= 1;
D[E[i][j].fi][E[i][j].fi]++;
D[E[i][j].se][E[i][j].se]++;
}
}
}
for(int i = 2 ; i <= N; ++i) {
if(!D[i][i]) return 0;
for(int j = 2 ; j <= N ; ++j) {
D[i][j] = inc(D[i][j],MOD);
}
}
return Guass();
}
void Solve() {
int ans = 0;
for(int S = 0 ; S < (1 << (N - 1)) ; ++S) {
if(S) cnt[S] = cnt[S - lowbit(S)] + 1;
if((N - 1 - cnt[S]) & 1) ans = inc(ans,MOD - calc(S));
else ans = inc(ans,calc(S));
}
out(ans);enter;
}
int main() {
#ifdef ivorysi
freopen("f1.in","r",stdin);
#endif
Init();
Solve();
}

【LOJ】#2027. 「SHOI2016」黑暗前的幻想乡的更多相关文章

  1. 「SHOI2016」黑暗前的幻想乡 解题报告

    「SHOI2016」黑暗前的幻想乡 sb题想不出来,应该去思考原因,而不是自暴自弃 一开始总是想着对子树做dp,但是状态压不起去,考虑用容斥消减一些条件变得好统计,结果越想越乱. 期间想过矩阵树定理, ...

  2. 「SHOI2016」黑暗前的幻想乡

    题目链接 戳我 \(Describe\) \(n−1\)个公司,每个公司能修一些边,求每条边都让不同的公司来修的生成树的方案数 \(Solution\) 这道题很明显容斥.答案就是:所有都选的生成树个 ...

  3. loj2027 「SHOI2016」黑暗前的幻想乡

    矩阵树定理+模意义下整数高斯消元 #include <algorithm> #include <iostream> #include <cstring> #incl ...

  4. Solution -「SHOI2016」「洛谷 P4336」黑暗前的幻想乡

    \(\mathcal{Description}\)   link.   有一个 \(n\) 个结点的无向图,给定 \(n-1\) 组边集,求从每组边集选出恰一条边最终构成树的方案树.对 \(10^9+ ...

  5. 【SHOI2016】黑暗前的幻想乡

    题面 题解 如果没有建筑公司的限制,那么就是个\(\mathrm{Matrix\;tree}\)板子 其实有了也一样 发现\(n\leq 17\),考虑容斥 每次钦定一些建筑公司,计算它们包含的边的生 ...

  6. bzoj 4596 [Shoi2016]黑暗前的幻想乡 矩阵树定理+容斥

    4596: [Shoi2016]黑暗前的幻想乡 Time Limit: 20 Sec  Memory Limit: 256 MBSubmit: 559  Solved: 325[Submit][Sta ...

  7. bzoj4596[Shoi2016]黑暗前的幻想乡 Matrix定理+容斥原理

    4596: [Shoi2016]黑暗前的幻想乡 Time Limit: 20 Sec  Memory Limit: 256 MBSubmit: 464  Solved: 264[Submit][Sta ...

  8. [ZJOI2016]小星星&[SHOI2016]黑暗前的幻想乡(容斥)

    这两道题思路比较像,所以把他们放到一块. [ZJOI2016]小星星 题目描述 小Y是一个心灵手巧的女孩子,她喜欢手工制作一些小饰品.她有n颗小星星,用m条彩色的细线串了起来,每条细线连着两颗小星星. ...

  9. P4336 [SHOI2016]黑暗前的幻想乡

    P4336 [SHOI2016]黑暗前的幻想乡 矩阵树定理(高斯消元+乘法逆元)+容斥 ans=总方案数 -(公司1未参加方案数 ∪ 公司2未参加方案数 ∪ 公司3未参加方案数 ∪ ...... ∪ ...

随机推荐

  1. HTML常用标签-<body>内基本标签(块级标签和内联标签)

    HTML常用标签-<body>内基本标签(块级标签和内联标签) 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 一.<hn>系列标签 n的取值范围是1~6,从 ...

  2. Django 2.0.1 官方文档翻译:接下来读什么(page 14)

    接下来读什么(page 14) 现在你应该已经阅读了所有的(page1-13 )介绍材料,决定继续使用Django.我们仅仅做了简要的介绍(事实上,如果你阅读了前面所有的内容,也只是全部文档的5%.) ...

  3. 样式缩写——css技巧(一)

    一.margin和padding缩写 例: .sample-margin1{ margin-top:15px; margin-right:20px; margin-bottom:12px; margi ...

  4. beta版1.1.2

    此次的beta版本做的修改重点在内部的算法上面. 因为之前所做的判断不重复的随机数方面采用的是String.valueof()的方式,即将int类型数字转换成string类型,比较string中是否出 ...

  5. HDU 1017 A Mathematical Curiosity 数学题

    解题报告:输入两个数,n和m,求两个数a和b满足0<a<b<n,并且(a^2+b^2+m) % (a*b) =0,这样的a和b一共有多少对.注意这里的b<n,并不可以等于n. ...

  6. php中各种hash算法的执行速度比较

    更多内容推荐微信公众号,欢迎关注: PHP中的Hash函数很多,像MD4.MD5.SHA-1.SHA-256.SHA-384.SHA-512等我们比较常见,那么各个哈希的执行速度呢? $algos = ...

  7. [转]CNN目标检测(一):Faster RCNN详解

    https://blog.csdn.net/a8039974/article/details/77592389 Faster RCNN github : https://github.com/rbgi ...

  8. cin.get()和cin.getline()之间的区别

    cin.getline()和cin.get()都是对输入的面向行的读取,即一次读取整行而不是单个数字或字符,但是二者有一定的区别. cin.get()每次读取一整行并把由Enter键生成的换行符留在输 ...

  9. for-of循环和for-in循环的区别

    基本上for in用于大部分常见的由key-value对构成的对象上以遍历对象内容. 但是for in在遍历数组对象时并不方便,这时候用for of会很方便.

  10. PHP内存溢出 Allowed memory size of 解决办法

    PHP出现如下错误:Allowed memory size of  xxx bytes exhausted at xxx:xxx (tried to allocate xxx bytes)    关于 ...