Spark聚合操作:combineByKey()
Spark中对键值对RDD(pairRDD)基于键的聚合函数中,都是通过combineByKey()实现的。
它可以让用户返回与输入数据类型不同的返回值(可以自己配置返回的参数,返回的类型)
首先理解:combineByKey是一个聚合函数,实际使用场景比如,对2个同学的3门考试科目成绩,分别求出他们的平均值。
(也就是对3门考试成绩进行聚合,用一个平均数来表示)
combineByKey是通过3个内部函数来解决这个问题的:
具体处理过程为:遍历分区中的所有元素,因此每一个元素的键要么没有遇到过,要么就和之前的键相等。
它的参数形式为:combineByKey(1.createCombiner,2.mergeValue,3.mergeCombiners,4.partioner)
比如,我有一个数组{1,2,1,2,4}
具体流程为:第一次遇到1,调用createCombiner()函数。
2.第一次遇到2,调用createCombiner()函数。
3.第二次遇到1,调用mergeValue()函数。
4.第二次遇到2,调用mergeValue()函数。
5.第一次遇到4,调用mergeValue()函数。
接下来解释每一个函数的作用
1.createCombiner():在遍历过程中,遇到新的键,就会调用createCombiner()函数。这个过程会发生在每一个分区内,因为RDD中有不同的分区,也就有同一个键调用多次createCombiner的情况。
2.mergeValue() 遇到已经重复的键,调用mergeValue()函数。
3.mergeCombiners() 如果有2个或者更多的分区,会把分区的结果合并。
4.pationer 分区函数()
举例:
准备数据:
val scores =sc.parallelize(Array(
("jack",89.0),
("jack",82.0),
("jack",92.0),
("tom",88.0),
("tom",89.0),
("tom",98.0)
))
数据为jack和tom的3门科目成绩,要对jack和tom的平均成绩进行输出。
1.遍历过程中,统计课程的数目,同时计算总分。
val score2=scores.combineByKey(x =>(1,x) ,
(c1:(Int,Double),newScore)=>(c1._1+1,c1._2+newScore),
(c1:(Int,Double),c2:(Int,Double))=>(c1._1+c2._1,c1._2+c2._2))
详解:
统计得到的结果:得到姓名:科目+总分
scala> score2.foreach(println)
(tom,(3,275.0))
(jack,(3,263.0))
2.求平均值:
val average=score2.map{case(name, (num,score) )=>(name,score/num) }
结果: average.foreach(println)
(tom,91.66666666666667)
(jack,87.66666666666667)
Spark聚合操作:combineByKey()的更多相关文章
- Spark GraphX 聚合操作
package Spark_GraphX import org.apache.spark.{SparkConf, SparkContext} import org.apache.spark.graph ...
- Spark RDD 操作
1. Spark RDD 创建操作 1.1 数据集合 parallelize 可以创建一个能够并行操作的RDD.其函数定义如下: ) scala> sc.defaultParallelism ...
- spark中的combineByKey函数的用法
一.函数的源码 /** * Simplified version of combineByKeyWithClassTag that hash-partitions the resulting RDD ...
- Update(Stage4):sparksql:第3节 Dataset (DataFrame) 的基础操作 & 第4节 SparkSQL_聚合操作_连接操作
8. Dataset (DataFrame) 的基础操作 8.1. 有类型操作 8.2. 无类型转换 8.5. Column 对象 9. 缺失值处理 10. 聚合 11. 连接 8. Dataset ...
- 《Entity Framework 6 Recipes》中文翻译系列 (27) ------ 第五章 加载实体和导航属性之关联实体过滤、排序、执行聚合操作
翻译的初衷以及为什么选择<Entity Framework 6 Recipes>来学习,请看本系列开篇 5-9 关联实体过滤和排序 问题 你有一实体的实例,你想加载应用了过滤和排序的相关 ...
- MongoDB 聚合操作
在MongoDB中,有两种方式计算聚合:Pipeline 和 MapReduce.Pipeline查询速度快于MapReduce,但是MapReduce的强大之处在于能够在多台Server上并行执行复 ...
- .NET LINQ 聚合操作
聚合操作 聚合运算从值集合计算单个值. 从一个月的日温度值计算日平均温度就是聚合运算的一个示例. 方法 方法名 说明 C# 查询表达式语法 Visual Basic 查询表达式语法 更多信息 ...
- Linq查询操作之聚合操作(count,max,min,sum,average,aggregate,longcount)
在Linq中有一些这样的操作,根据集合计算某一单一值,比如集合的最大值,最小值,平均值等等.Linq中包含7种操作,这7种操作被称作聚合操作. 1.Count操作,计算序列中元素的个数,或者计算满足一 ...
- OpenStack/Gnocchi简介——时间序列数据聚合操作提前计算并存储起来,先算后取的理念
先看下 http://www.cnblogs.com/bonelee/p/6236962.html 这里对于环形数据库的介绍,便于理解归档这个操作! 转自:http://blog.sina.com.c ...
随机推荐
- HBase Master高可用(HA)
HMaster没有单点问题,HBase中可以启动多个HMaster,通过Zookeeper的Master Election机制保证总有一个Master运行. 所以这里要配置HBase高可用的话,只需要 ...
- python pandas dataframe 操作记录
从数据看select出数据后如何转换为dataframe df = DataFrame(cur.fetchall()) 如何更改列名,选取列,进行groupby操作 df.columns = ['me ...
- snip
首先明确物体太小太大都不好检测(都从roi的角度来分析): 1.小物体: a.本身像素点少,如果从anchor的点在gt像素内来说,能提取出来的正样本少 b.小物体会出现iou过低.具体来说 ...
- mac下git安装和使用
1.下载git客户端,下载地址为:https://git-scm.com/download/mac 2.打开安装包,可以看到此时的界面为: 我们需要把.pkg的安装包安装到系统当中.我双击了安装包 ...
- ubuntu下安装eclipse IDE for C/C++ developers
序 linux的GUI和windos比起来实在逊色,虽然它的终端模式(命令行模式)非常强大.linux发行版ubuntu的GUI相对其他版本要华丽一些,所以最近由redhat转向ubuntu进行li ...
- C++程序设计入门(上) 之对象和类
面向对象编程: 如何定义对象? 同类型对象用一 个通用的类来定义 class C { int p; int f(); }; C ca, cb; 一个类用变量来定义数据域,用函数定义行为. class ...
- float浮动的一些基础常识
<!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...
- Python学习 :常用模块(二)
常用模块(二) 四.os模块 os模块是与操作系统交互的一个接口,用于对操作系统进行调用 os.getcwd() # 提供当前工作目录 os.chdir() # 改变当前工作目录 os.curdir( ...
- OpenID Connect Core 1.0(一)介绍
IdentityServer4是基于OpenID Connect and OAuth 2.0框架,OpenID Connect Core 1.0是IdentityServer4最重要的文档 By 道法 ...
- WPF 学习笔记-在WPF下创建托盘图标
原文:WPF 学习笔记-在WPF下创建托盘图标 首先需要在项目中引用System.Windows.Forms,System.Drawing; using System; using System.Co ...