Netty源码分析第5章(ByteBuf)---->第5节: directArena分配缓冲区概述
Netty源码分析第五章: ByteBuf
第五节: directArena分配缓冲区概述
上一小节简单分析了PooledByteBufAllocator中, 线程局部缓存和arean的相关逻辑, 这一小节简单分析下directArena分配缓冲区的相关过程
回到newDirectBuffer中:
protected ByteBuf newDirectBuffer(int initialCapacity, int maxCapacity) {
PoolThreadCache cache = threadCache.get();
PoolArena<ByteBuffer> directArena = cache.directArena;
ByteBuf buf;
if (directArena != null) {
buf = directArena.allocate(cache, initialCapacity, maxCapacity);
} else {
if (PlatformDependent.hasUnsafe()) {
buf = UnsafeByteBufUtil.newUnsafeDirectByteBuf(this, initialCapacity, maxCapacity);
} else {
buf = new UnpooledDirectByteBuf(this, initialCapacity, maxCapacity);
}
}
return toLeakAwareBuffer(buf);
}
获取了directArena对象之后, 通过allocate方法分配一个ByteBuf, 这里allocate方法是PoolArena类中的方法
跟到allocate方法中:
PooledByteBuf<T> allocate(PoolThreadCache cache, int reqCapacity, int maxCapacity) {
PooledByteBuf<T> buf = newByteBuf(maxCapacity);
allocate(cache, buf, reqCapacity);
return buf;
}
首先通过newByteBuf获得一个ByteBuf对象
再通过allocate方法进行分配, 这里要注意, 这里进行分配的时候是线程私有的directArena进行分配
我们跟到newByteBuf方法中
因为是directArena调用的newByteBuf, 所以这里会进入DirectArena类的newByteBuf中:
protected PooledByteBuf<ByteBuffer> newByteBuf(int maxCapacity) {
if (HAS_UNSAFE) {
return PooledUnsafeDirectByteBuf.newInstance(maxCapacity);
} else {
return PooledDirectByteBuf.newInstance(maxCapacity);
}
}
因为默认通常是有unsafe对象的, 所以这里会走到这一步中PooledUnsafeDirectByteBuf.newInstance(maxCapacity)
通过静态方法newInstance创建一个PooledUnsafeDirectByteBuf对象
跟到newInstance方法中:
static PooledUnsafeDirectByteBuf newInstance(int maxCapacity) {
PooledUnsafeDirectByteBuf buf = RECYCLER.get();
buf.reuse(maxCapacity);
return buf;
}
这里通过RECYCLER.get()这种方式拿到一个ByteBuf对象, RECYCLER其实是一个对象回收站, 这部分内容会在后面的内容中详细剖析, 这里我们只需要知道, 这种方式能从回收站中拿到一个对象, 如果回收站里没有相关对象, 则创建一个新
因为这里有可能是从回收站中拿出的一个对象, 所以通过reuse进行复用
跟到reuse方法中:
final void reuse(int maxCapacity) {
maxCapacity(maxCapacity);
setRefCnt(1);
setIndex0(0, 0);
discardMarks();
}
这里设置了的最大可扩容内存, 对象的引用数量, 读写指针位置都重置为0, 以及读写指针的位置标记也都重置为0
我们回到PoolArena的allocate方法中:
PooledByteBuf<T> allocate(PoolThreadCache cache, int reqCapacity, int maxCapacity) {
PooledByteBuf<T> buf = newByteBuf(maxCapacity);
allocate(cache, buf, reqCapacity);
return buf;
}
拿到了ByteBuf对象, 就可以通过allocate(cache, buf, reqCapacity)方法进行内存分配了
跟到allocate方法中:
private void allocate(PoolThreadCache cache, PooledByteBuf<T> buf, final int reqCapacity) {
//规格化
final int normCapacity = normalizeCapacity(reqCapacity);
if (isTinyOrSmall(normCapacity)) {
int tableIdx;
PoolSubpage<T>[] table;
//判断是不是tinty
boolean tiny = isTiny(normCapacity);
if (tiny) { // < 512
//缓存分配
if (cache.allocateTiny(this, buf, reqCapacity, normCapacity)) {
return;
}
//通过tinyIdx拿到tableIdx
tableIdx = tinyIdx(normCapacity);
//subpage的数组
table = tinySubpagePools;
} else {
if (cache.allocateSmall(this, buf, reqCapacity, normCapacity)) {
return;
}
tableIdx = smallIdx(normCapacity);
table = smallSubpagePools;
} //拿到对应的节点
final PoolSubpage<T> head = table[tableIdx]; synchronized (head) {
final PoolSubpage<T> s = head.next;
//默认情况下, head的next也是自身
if (s != head) {
assert s.doNotDestroy && s.elemSize == normCapacity;
long handle = s.allocate();
assert handle >= 0;
s.chunk.initBufWithSubpage(buf, handle, reqCapacity); if (tiny) {
allocationsTiny.increment();
} else {
allocationsSmall.increment();
}
return;
}
}
allocateNormal(buf, reqCapacity, normCapacity);
return;
}
if (normCapacity <= chunkSize) {
//首先在缓存上进行内存分配
if (cache.allocateNormal(this, buf, reqCapacity, normCapacity)) {
//分配成功, 返回
return;
}
//分配不成功, 做实际的内存分配
allocateNormal(buf, reqCapacity, normCapacity);
} else {
//大于这个值, 就不在缓存上分配
allocateHuge(buf, reqCapacity);
}
}
这里看起来逻辑比较长, 其实主要步骤分为两步
1.首先在缓存上进行分配, 对应步骤是:
cache.allocateTiny(this, buf, reqCapacity, normCapacity)
cache.allocateSmall(this, buf, reqCapacity, normCapacity)
cache.allocateNormal(this, buf, reqCapacity, normCapacity)
2.如果在缓存上分配不成功, 则实际分配一块内存, 对应步骤是
allocateNormal(buf, reqCapacity, normCapacity)
在这里对几种类型的内存进行介绍:
之前的小节我们介绍过, 缓冲区内存类型分为tiny, small, 和normal, 其实还有种不常见的类型叫做huge, 那么这几种类型的内存有什么区别呢, 实际上这几种类型是按照缓冲区初始化空间的范围进行区分的, 具体区分如下:
tiny类型对应的缓冲区范围为0-512B
small类型对应的缓冲区范围为512B-8K
normal类型对应的缓冲区范围为8K-16MB
huge类型对应缓冲区范围为大于16MB
简单介绍下有关范围的含义:
16MB对应一个chunk, netty是以chunk为单位向操作系统申请内存的
8k对应一个page, page是将chunk切分后的结果, 一个chunk对应2048个page
8k以下对应一个subpage, subpage是page的切分, 一个page可以切分多个subpage, 具体切分几个需要根据subpage的大小而定, 比如只要分配1k的缓冲区, 则会将page切分成8个subpage
以上就是directArena内存分配的大概流程和相关概念
Netty源码分析第5章(ByteBuf)---->第5节: directArena分配缓冲区概述的更多相关文章
- Netty源码分析第5章(ByteBuf)---->第4节: PooledByteBufAllocator简述
Netty源码分析第五章: ByteBuf 第四节: PooledByteBufAllocator简述 上一小节简单介绍了ByteBufAllocator以及其子类UnPooledByteBufAll ...
- Netty源码分析第5章(ByteBuf)---->第6节: 命中缓存的分配
Netty源码分析第6章: ByteBuf 第六节: 命中缓存的分配 上一小节简单分析了directArena内存分配大概流程, 知道其先命中缓存, 如果命中不到, 则区分配一款连续内存, 这一小节带 ...
- Netty源码分析第5章(ByteBuf)---->第7节: page级别的内存分配
Netty源码分析第五章: ByteBuf 第六节: page级别的内存分配 前面小节我们剖析过命中缓存的内存分配逻辑, 前提是如果缓存中有数据, 那么缓存中没有数据, netty是如何开辟一块内存进 ...
- Netty源码分析第5章(ByteBuf)---->第10节: SocketChannel读取数据过程
Netty源码分析第五章: ByteBuf 第十节: SocketChannel读取数据过程 我们第三章分析过客户端接入的流程, 这一小节带大家剖析客户端发送数据, Server读取数据的流程: 首先 ...
- Netty源码分析第5章(ByteBuf)---->第1节: AbstractByteBuf
Netty源码分析第五章: ByteBuf 概述: 熟悉Nio的小伙伴应该对jdk底层byteBuffer不会陌生, 也就是字节缓冲区, 主要用于对网络底层io进行读写, 当channel中有数据时, ...
- Netty源码分析第5章(ByteBuf)---->第2节: ByteBuf的分类
Netty源码分析第五章: ByteBuf 第二节: ByteBuf的分类 上一小节简单介绍了AbstractByteBuf这个抽象类, 这一小节对其子类的分类做一个简单的介绍 ByteBuf根据不同 ...
- Netty源码分析第5章(ByteBuf)---->第3节: 缓冲区分配器
Netty源码分析第五章: ByteBuf 第三节: 缓冲区分配器 缓冲区分配器, 顾明思议就是分配缓冲区的工具, 在netty中, 缓冲区分配器的顶级抽象是接口ByteBufAllocator, 里 ...
- Netty源码分析第5章(ByteBuf)---->第8节: subPage级别的内存分配
Netty源码分析第五章: ByteBuf 第八节: subPage级别的内存分配 上一小节我们剖析了page级别的内存分配逻辑, 这一小节带大家剖析有关subPage级别的内存分配 通过之前的学习我 ...
- Netty源码分析第5章(ByteBuf)---->第9节: ByteBuf回收
Netty源码分析第五章: ByteBuf 第九节: ByteBuf回收 之前的章节我们提到过, 堆外内存是不受jvm垃圾回收机制控制的, 所以我们分配一块堆外内存进行ByteBuf操作时, 使用完毕 ...
随机推荐
- arcgis api for javascript本地部署加载地图
最近开始学习arcgis api for javascript,发现一头雾水,决定记录下自己的学习过程. 一.下载arcgis api for js 4.2的library和jdk,具体安装包可以去官 ...
- Day3JavaScript(一)JavaScript初识以及bom操作
JavaScript简介 什么是JavaScript 弱类型,动态类型,基于原型的直译性的编程语言.1995年netscape(网景)在导航者浏览器中设计完成. JavaScript的特点 1.与HT ...
- Odoo的@api.装饰器
转载请注明原文地址:https://www.cnblogs.com/cnodoo/p/9281437.html Odoo自带的api装饰器主要有:model,multi,one,constrains, ...
- mac 安装secureCRT
下载 http://www.xue51.com/mac/1632.html 会得到下面的文件: 打开dmg文件: 将SecureCRT移到Applications中,然后点击打开一次(重要): 然后打 ...
- VC++中的__super::
在学习别人的代码时,发现了一个__super,第一感觉很像java中的super,或者C#中的base网上查了一下发现作用差不多,都是指父类.C++本身没有__super,这是visual c++的扩 ...
- Spring源码分析(三)容器核心类
摘要:本文结合<Spring源码深度解析>来分析Spring 5.0.6版本的源代码.若有描述错误之处,欢迎指正. 在上一篇文章中,我们熟悉了容器的基本用法.在这一篇,我们开始分析Spri ...
- Win10/Ubuntu双系统安装常见问题
目录 1.win10重启无法进入BIOS 2.install ubuntu后黑屏 2.1 解决安装黑屏 2.2 安装英伟达显卡驱动 3.ubuntu中文系统注意 4.Windows系统时间异常 4.1 ...
- SparkSQL执行时参数优化
近期接手了不少大数据表任务调度补数据的工作,补数时发现资源消耗异常的大且运行速度却不怎么给力. 发现根本原因在于sparkSQL配置有诸多问题,解决后总结出来就当抛砖引玉了. 具体现象 内存CPU比例 ...
- Datax3.0使用说明
一.datax3.0介绍 1.DataX 是一个异构数据源离线同步工具,致力于实现包括关系型数据库(MySQL.Oracle等).HDFS.Hive.ODPS.HBase.FTP等各种异构数据源之间稳 ...
- git push 每次都要输入用户名密码
添加远程库的时候使用了https的方式..所以每次都要用https的方式push到远程库,速度还慢.. 查看使用的传输协议: git remote -v 重新设置成ssh的方式: git remote ...