Use the OpenCV function :copy_make_border:`copyMakeBorder <>` to set the borders (extra padding to your image).The explanation below belongs to the book Learning OpenCV by Bradski and Kaehler.

  1. In our previous tutorial we learned to use convolution to operate on images. One problem that naturally arises is how to handle the boundaries. How can we convolve them if the evaluated points are at the edge of the image?
  2. What most of OpenCV functions do is to copy a given image onto another slightly larger image and then automatically pads the boundary (by any of the methods explained in the sample code just below). This way, the convolution can be performed over the needed pixels without problems (the extra padding is cut after the operation is done).
  3. In this tutorial, we will briefly explore two ways of defining the extra padding (border) for an image:
    1. BORDER_CONSTANT: Pad the image with a constant value (i.e. black or0)
    2. BORDER_REPLICATE: The row or column at the very edge of the original is replicated to the extra border.

This will be seen more clearly in the Code section.

What does this program do?

  • Load an image
  • Let the user choose what kind of padding use in the input image. There are two options:
  • Constant value border: Applies a padding of a constant value for the whole border. This value will be updated randomly each 0.5 seconds.
  • Replicated border: The border will be replicated from the pixel values at the edges of the original image.
  • The user chooses either option by pressing 'c' (constant) or 'r' (replicate)
  • The program finishes when the user presses 'ESC'

The tutorial code's is shown lines below.

''' file name : border.py
Description : This sample shows how to add border to an image''' import cv2
import numpy as np print " Press r to replicate the border with a random color "
print " Press c to replicate the border "
print " Press Esc to exit " img = cv2.imread('../boldt.jpg')
rows,cols = img.shape[:2]
dst = img.copy() top = int (0.05*rows)
bottom = int (0.05*rows)
left = int (0.05*cols)
right = int (0.05*cols) while(True):
cv2.imshow('border',dst)
k = cv2.waitKey(500)
if k==27:
break
elif k == ord('c'):
value = np.random.randint(0,255,(3,)).tolist()
dst = cv2.copyMakeBorder(img,top,bottom,left,right,
cv2.BORDER_CONSTANT,value = value)
elif k == ord('r'):
dst = cv2.copyMakeBorder(img,top,bottom,left,right,cv2.BORDER_REPLICATE)
cv2.destroyAllWindows()

Explanation

1. Now we initialize the argument that defines the size of the borders (top,bottom,left andright). We give them a value of 5% the size of src.

top = int (0.05*rows)
bottom = int (0.05*rows) left = int (0.05*cols)
right = int (0.05*cols)

2. The program begins a while loop. If the user presses 'c' or 'r', the borderType variable takes the value of BORDER_CONSTANT or BORDER_REPLICATE respectively:

while(True):

    cv2.imshow('border',dst)
k = cv2.waitKey(500)
if k==27:
break
elif k == ord('c'):
value = np.random.randint(0,255,(3,)).tolist()
dst = cv2.copyMakeBorder(img,top,bottom,left,right,cv2.BORDER_CONSTANT,value = value)
elif k == ord('r'):
dst = cv2.copyMakeBorder(img,top,bottom,left,right,cv2.BORDER_REPLICATE)

3. Finally, we call the function :copy_make_border:`copyMakeBorder <>` to apply the respective padding:

copyMakeBorder( src, dst, top, bottom, left, right, borderType, value );

The arguments are:

  • src: Source image
  • dst: Destination image
  • top, bottom, left, right: Length in pixels of the borders at each side of the image. We define them as being 5% of the original size of the image.
  • borderType: Define what type of border is applied. It can be constant or replicate for this example.
  • value: If borderType is BORDER_CONSTANT, this is the value used to fill the border pixels.

输出结果

After compiling the code above, you can execute it giving as argument the path of an image. The result should be:

  • By default, it begins with the border set to BORDER_CONSTANT. Hence, a succession of random colored borders will be shown.
  • If you press 'r', the border will become a replica of the edge pixels.
  • If you press 'c', the random colored borders will appear again
  • If you press 'ESC' the program will exit.

Below some screenshot showing how the border changes color and how the BORDER_REPLICATE option looks:



=====================================================
转载请注明处:http://blog.csdn.net/songzitea/article/details/8698083
=====================================================

【OpenCV】解析OpenCV中copyMakerBorder函数的更多相关文章

  1. (转)解析PHP中ob_start()函数的用法

    本篇文章是对PHP中ob_start()函数的用法进行了详细的分析介绍,需要的朋友参考下     ob_start()函数用于打开缓冲区,比如header()函数之前如果就有输出,包括回车/空格/换行 ...

  2. 【PHP】解析PHP中的函数

    目录结构: contents structure [-] 可变参数的函数 变量函数 回调函数 自定义函数库 闭包(Closure)函数的使用 在这篇文章中,笔者将会讲解如何使用PHP中的函数,PHP是 ...

  3. 解析opencv中Box Filter的实现并提出进一步加速的方案(源码共享)。

    说明:本文所有算法的涉及到的优化均指在PC上进行的,对于其他构架是否合适未知,请自行试验. Box Filter,最经典的一种领域操作,在无数的场合中都有着广泛的应用,作为一个很基础的函数,其性能的好 ...

  4. OpenCV图像处理中常用函数汇总(1)

    //俗话说:好记性不如烂笔头 //用到opencv 中的函数时往往会一时记不起这个函数的具体参数怎么设置,故在此将常用函数做一汇总: Mat srcImage = imread("C:/Us ...

  5. OpenCV中phase函数计算方向场

    一.函数原型 ​该函数参数angleInDegrees默认为false,即弧度,当置为true时,则输出为角度. phase函数根据函数来计算角度,计算精度大约为0.3弧度,当x,y相等时,angle ...

  6. opencv学习笔记之cvSobel 函数解析

    首先,我们来开一下计算机是如何检测边缘的.以灰度图像为例,它的理论基础是这样的,如果出现一个边缘,那么图像的灰度就会有一定的变化,为了方便假设由黑渐变为白代表一个边界,那么对其灰度分析,在边缘的灰度函 ...

  7. opencv学习笔记——cv::CommandLineParser函数详解

    命令行解析类CommandLineParser 该类的作用主要用于命令行的解析,也就是分解命令行的作用.以前版本没这个类时,如果要运行带参数的.exe,必须在命令行中输入文件路径以及各种参数,并且输入 ...

  8. opencv通过dll调用matlab函数,图片作为参数

    [blog 项目实战派]opencv通过dll调用matlab函数,图片作为参数                   前文介绍了如何“csharp通过dll调用opencv函数,图片作为参数”.而在实 ...

  9. Opencv 3.3.0 常用函数

    如何调图像的亮度和对比度? //如何增加图片的对比度或亮度? void contrastOrBrightAdjust(InputArray &src,OutputArray &dst, ...

随机推荐

  1. Swift2.0语言教程之Swift2.0语言中的标准函数

    Swift2.0语言教程之Swift2.0语言中的标准函数 Swift2.0中的标准函数 函数除了可以根据参数列表的有无分为无参函数和有参函数,还可以从定义角度分为用户自定义函数和标准函数两种.以上的 ...

  2. 【51Nod 1222】最小公倍数计数

    http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1222 求\([a,b]\)中的个数转化为求\([1,b]\)中的个数减去 ...

  3. poj 1218 THE DRUNK JAILER

    THE DRUNK JAILER Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 23358   Accepted: 1472 ...

  4. Null 和 Undefined

    在JavaScript中存在这样两种原始类型:Null与Undefined.这两种类型常常会使JavaScript的开发人员产生疑惑,在什么时候是Null,什么时候又是Undefined? Undef ...

  5. TensorFlow安装和HelloWorld

    TensorFlow安装 TensorFlow可以在各种操作系统上面安装.安装的时候要注意TensorFlow的类型,一种是普通的版本,仅支持CPU,安装简单.另外一种类型带GPU的,可以利用GPU来 ...

  6. 使用postMessage进行react和iframe的数据通信.md

    将react的数据传递给iframe 1.首先在父组件(react文件)内引入iframe <iframe style={{border:0,width:"100%",hei ...

  7. [转载] 使用Kettle进行数据迁移(ETL)

    由于开发新的系统,需要将之前一个老的C/S应用的数据按照新的数据设计导入到新库中.此过程可能涉及到表结构不一致.大数据量(千万级,甚至上亿)等情况,包括异构数据的抽取.清洗等等工作.部分复杂的工作需要 ...

  8. .NET程序员提高效率的70多个开发工具

    工欲善其事,必先利其器,没有好的工具,怎么能高效的开发出高质量的代码呢?本文为各ASP.NET 开发者介绍一些高效实用的工具,涉及SQL 管理,VS插件,内存管理,诊断工具等,涉及开发过程的各个环节, ...

  9. NAS(Network Attached Storage:网络附属存储)

    NAS(Network Attached Storage:网络附属存储)按字面简单说就是连接在网络上,具备资料存储功能的装置,因此也称为"网络存储器".它是一种专用数据存储服务器. ...

  10. __attribute__ ((attribute-list))

    http://blog.csdn.net/ithomer/article/details/6566739 构造与析构: #include <stdio.h> #include <st ...