CountVectorizer,Tf-idfVectorizer和word2vec构建词向量的区别
CountVectorizer和Tf-idfVectorizer构建词向量都是通过构建字典的方式,比如在情感分析问题中,我需要把每一个句子(评论)转化为词向量,这两种方法是如何构建的呢?拿CountVectorizer来说,首先构建出一个字典,字典包含了所有样本出现的词汇,每一个词汇对应着它出现的顺序和频率。对于每一个句子来说,构建出来的词向量的长度就是整个词典的长度,词向量的每一维上都代表这一维对应的单词的频率。同理,Tf-idf就是将频率换成Tf权值。
CountVectorizer有几个参数个人觉得比较重要:
max_df:可以设置为范围在[0.0 1.0]的float,也可以设置为没有范围限制的int,默认为1.0。这个参数的作用是作为一个阈值,当构造语料库的关键词集的时候,如果某个词的document frequence大于max_df,这个词不会被当作关键词。如果这个参数是float,则表示词出现的次数与语料库文档数的百分比,如果是int,则表示词出现的次数。如果参数中已经给定了vocabulary,则这个参数无效
min_df:类似于max_df,不同之处在于如果某个词的document frequence小于min_df,则这个词不会被当作关键词
max_features:默认为None,可设为int,对所有关键词的term frequency进行降序排序,只取前max_features个作为关键词集
Tf-idfVectorizer也有上述参数,除此之外还有一个个人觉得能用得上的:
norm:默认为'l2',可设为'l1'或None,计算得到tf-idf值后,如果norm='l2',则整行权值将归一化,即整行权值向量为单位向量,如果norm=None,则不会进行归一化。大多数情况下,使用归一化是有必要的。(这里的l1和l2的区别我目前也不太明白)
通过这些方法转化的词向量维度还是比较大的,而且是稀疏阵,为了避免过拟合等问题,所以在实际处理中需要降维处理。
word2vec的话比他们要复杂一些,是利用类似神经网络进行训练得到的词向量,每一个单词有对应的向量。一般如果像微博评论情感分析这种问题,在求评论向量的时候,可以直接对每一个词向量求平均作为句子向量。至于word2vec实现不在这里赘述。word2vec可以设置好词向量维度,但是一般设在100维以上。如果样本不算太大时,为了避免后续词向量维度较大造成的训练问题,可以将输出维度设置为几十维。
CountVectorizer,Tf-idfVectorizer和word2vec构建词向量的区别的更多相关文章
- 基于word2vec训练词向量(一)
转自:https://blog.csdn.net/fendouaini/article/details/79905328 1.回顾DNN训练词向量 上次说到了通过DNN模型训练词获得词向量,这次来讲解 ...
- 基于word2vec训练词向量(二)
转自:http://www.tensorflownews.com/2018/04/19/word2vec2/ 一.基于Hierarchical Softmax的word2vec模型的缺点 上篇说了Hi ...
- 文本分布式表示(二):用tensorflow和word2vec训练词向量
看了几天word2vec的理论,终于是懂了一些.理论部分我推荐以下几篇教程,有博客也有视频: 1.<word2vec中的数学原理>:http://www.cnblogs.com/pegho ...
- [Algorithm & NLP] 文本深度表示模型——word2vec&doc2vec词向量模型
深度学习掀开了机器学习的新篇章,目前深度学习应用于图像和语音已经产生了突破性的研究进展.深度学习一直被人们推崇为一种类似于人脑结构的人工智能算法,那为什么深度学习在语义分析领域仍然没有实质性的进展呢? ...
- word2vec生成词向量原理
假设每个词对应一个词向量,假设: 1)两个词的相似度正比于对应词向量的乘积.即:$sim(v_1,v_2)=v_1\cdot v_2$.即点乘原则: 2)多个词$v_1\sim v_n$组成的一个上下 ...
- word2vec 构建中文词向量
词向量作为文本的基本结构——词的模型,以其优越的性能,受到自然语言处理领域研究人员的青睐.良好的词向量可以达到语义相近的词在词向量空间里聚集在一起,这对后续的文本分类,文本聚类等等操作提供了便利,本文 ...
- word2vec词向量训练及中文文本类似度计算
本文是讲述怎样使用word2vec的基础教程.文章比較基础,希望对你有所帮助! 官网C语言下载地址:http://word2vec.googlecode.com/svn/trunk/ 官网Python ...
- 斯坦福NLP课程 | 第2讲 - 词向量进阶
作者:韩信子@ShowMeAI,路遥@ShowMeAI,奇异果@ShowMeAI 教程地址:http://www.showmeai.tech/tutorials/36 本文地址:http://www. ...
- 词袋模型(BOW,bag of words)和词向量模型(Word Embedding)概念介绍
例句: Jane wants to go to Shenzhen. Bob wants to go to Shanghai. 一.词袋模型 将所有词语装进一个袋子里,不考虑其词法和语序的问题,即每个 ...
随机推荐
- 2017-2018-1 20155315 《信息安全系统设计基础》嵌入式C语言测试
Hours 要求 伪代码 提取Hours 提取时间地址 时间存放在(基址+2)的16位寄存器中,定义一个时间宏存放地址. #define Time_Addr 0xFFFFC0000 #define T ...
- 20145234黄斐《Java程序设计》MyDC
http://git.oschina.net/jiataiji/java
- STM32通用定时器配置
一.STM32通用定时器原理 STM32 系列的CPU,有多达8个定时器,其中TIM1和TIM8是能够产生三对PWM互补输出的高级定时器,常用于三相电机的驱动,它们的时钟由APB2的输出产生.其它6个 ...
- libpcap详解
转发自http://blog.chinaunix.net/uid-21556133-id-120228.html libpcap(Packet Capture Library),即数据包捕获函数库,是 ...
- pymysql模块使用教程
一.操作数据库模板 pymysql是Python中操作mysql的模块,(使用方法几乎和MySQLdb相同,但是在Python3中,mysqldb这个库已经不能继续使用了) 下载安装方法: 方法一. ...
- 【ASP.NET Core】运行原理(2):启动WebHost
本系列将分析ASP.NET Core运行原理 [ASP.NET Core]运行原理[1]:创建WebHost [ASP.NET Core]运行原理[2]:启动WebHost [ASP.NET Core ...
- 【RabbitMQ】三种Exchange模式——订阅、路由、通配符模式
https://blog.csdn.net/ww130929/article/details/72842234
- Unity萌新日记—开发小技巧与冷知识(脚本篇)
在学习unity的过程中,总会遇到很多零碎的知识点和小技巧,在此把它们记录下来,方便日后查看. 第一篇是关于脚本的一些你可能不知道的小知识. 还是个正在学习的萌新,如果写的不好,请谅解. Unity版 ...
- GlusterFS分布式存储集群-1. 部署
参考文档: Quick Start Guide:http://gluster.readthedocs.io/en/latest/Quick-Start-Guide/Quickstart/ Instal ...
- Burp Suite pro 抓包工具配置
下载地址: 链接:https://pan.baidu.com/s/1WyuAlJSWZ3HyyEQlpiH3cA 提取码:6l38 破解相关请查看解压文件链接 1.firefox代理设置: burp ...