题目大意:现有$n$条排成一行的木板,每个木板有一个目标颜色。你每次能将一个区间内的木板分别染成它们的目标颜色,而这次染色的代价为这个区间内不同目标颜色的木板的数量的平方。问将全部木板染成目标颜色的最小代价。

数据范围:$n≤50000$,颜色数量$≤50000$。

这题我们显然可以$dp$,令$f[i]$表示把前i个点覆盖完的最小代价,显然$f[i]=min(f[j-1]+w(j,i)^2)$ 其中$w(j,i)$表示区间$[i,j]$中的颜色数量。

这一题有一个隐藏条件,就是总代价不会超过$n$,这个是显然的。

所以,当区间$[i,j]$中的颜色数量$>\sqrt{n}$时,就显然不是最优的。

考虑到$f[i]$是非降的,那么我们处理一个数组$pre[i][j]$表示:从第$i$号点开始,恰好包含$j$种颜色的区间最左侧的端点编号。

我们从$1$到$\sqrt{n}$枚举$j$,每次$O(n)$的时间从右往左扫,详情见代码。

然后就愉悦地做完了,时间复杂度为$O(n*\sqrt{n})$。

 #include<bits/stdc++.h>
#define M 100005
#define INF 1000000005
using namespace std; int n,a[M]={},pre[M][]={},f[M]={},cnt[M]={},sum=; int main(){
scanf("%d",&n);
for(int i=;i<=n;i++) scanf("%d",a+i);
for(int j=;j*j<=n;j++){
for(int i=n,k=n;~i;i--){
while(k>=&&sum<=j){
cnt[a[k]]++;
if(cnt[a[k]]==) sum++;
k--;
}
pre[i][j]=k+;
cnt[a[i]]--; if(!cnt[a[i]]) sum--;
}
}
for(int i=;i<=n;i++){
f[i]=INF;
for(int j=;j*j<=n;j++)
f[i]=min(f[i],f[pre[i][j]]+j*j);
}
printf("%d\n",f[n]);
}

【xsy1172】 染色 dp的更多相关文章

  1. Educational Codeforces Round 62 (Rated for Div. 2)E(染色DP,构造,思维,组合数学)

    #include<bits/stdc++.h>using namespace std;const long long mod=998244353;long long f[200007][2 ...

  2. 【POJ 1112】Team Them Up!(二分图染色+DP)

    Description Your task is to divide a number of persons into two teams, in such a way, that: everyone ...

  3. poj-1112 (二分图染色+dp分组)

    #include <iostream> #include <algorithm> #include <cstring> using namespace std; ; ...

  4. BZOJ:2958 序列染色 DP

    bzoj2958 序列染色 题目传送门 Description 给出一个长度为N由B.W.X三种字符组成的字符串S,你需要把每一个X染成B或W中的一个. 对于给出的K,问有多少种染色方式使得存在整数a ...

  5. 染色dp(确定一行就可行)

    题:https://codeforces.com/contest/1027/problem/E 题意:给定n*n的方格,可以染黑白,要求相邻俩行”完全“不同或完全相同,对于列也是一样.然后限制不能拥有 ...

  6. 5.29 省选模拟赛 树的染色 dp 最优性优化

    LINK:树的染色 考场上以为这道题要爆蛋了 没想到 推出正解来了. 反正是先写了爆搜的 爆搜最近越写越熟练了 容易想到dp 容易设出状态 f[i][j]表示以i为根的子树内白色的值为j此时黑色的值怎 ...

  7. bzoj2958: 序列染色(DP)

    2958: 序列染色 题目:传送门 题解: 大难题啊(还是我太菜了) %一发大佬QTT 代码: #include<cstdio> #include<cstring> #incl ...

  8. Atcoder Grand Contest 031B(DP,思维)

    #include<bits/stdc++.h>using namespace std;int a[200007];int b[200007];long long dp[200007];lo ...

  9. [学习笔记]整体DP

    问题: 有一些问题,通常见于二维的DP,另一维记录当前x的信息,但是这一维过大无法开下,O(nm)也无法通过. 但是如果发现,对于x,在第二维的一些区间内,取值都是相同的,并且这样的区间是有限个,就可 ...

随机推荐

  1. Json和XML解析

    NSXMLParse 关于XML,有两种解析方式,分别是SAX(Simple API for XML,基于事件驱动的解析方式,逐行解析数据,采用协议回调机制)和DOM(Document Object ...

  2. Maximum profit of stocks

    https://github.com/Premiumlab/Python-for-Algorithms--Data-Structures--and-Interviews/blob/master/Moc ...

  3. 2018.09.30 bzoj4025: 二分图(线段树分治+并查集)

    传送门 线段树分治好题. 这道题实际上有很多不同的做法: cdq分治. lct. - 而我学习了dzyo的线段树分治+并查集写法. 所谓线段树分治就是先把操作分成lognlognlogn个连续不相交的 ...

  4. HDU 2504 又见GCD (最大公因数+暴力)

    题意:是中文题. 析:a和c的最大公因数是b,也就是说,a和c除了b就没有公因数了.再说就是互质了. 所以先把a除以b,然后一个暴力n,满足gcd(a, n) =1,就结束,就是n倍的c. 代码如下: ...

  5. python 判断是否是空行或注释行

    #coding:utf-8 '''''cdays-4-exercise-6.py 文件基本操作 @note: 文件读取写入, 列表排序, 字符串操作 @see: 字符串各方法可参考hekp(str)或 ...

  6. 14)settings.xml

    1. User Level. ${user.home}/.m2/settings.xml 2. Global Level. ${maven.home}/conf/settings.xml <se ...

  7. day8 异常处理

    异常和错误 part1:程序中难免出现错误,而错误分成两种 1.语法错误(这种错误,根本过不了python解释器的语法检测,必须在程序执行前就改正) 2.逻辑错误(逻辑错误) part2:什么是异常 ...

  8. redis只加载AOF文件

    如果同时配置写AOF和RDB两种文件,但在redis启动时,只会加载AOF,除非配置只写RDB,才会加载RDB文件,也因此AOF文件必须是全量数据,所以会越来越大,这缺点也将是redis优化的一个方向 ...

  9. About DNS

    FQDN -- Fully Qualified Domain Name TTL -- Time To Live TLD -- Top Level Domain gTLD -- Generic Top ...

  10. Javascript 中函数的 length 属性

    每个函数都有一个 length属性 (函数名.length), 表示期望接收的函数的个数(而不是实际接收的参数个数) 它与arguments不同. arguments.length 是表示函数实际接收 ...