BZOJ3112 [Zjoi2013]防守战线 【单纯形】
题目链接
题解
同志愿者招募
费用流神题
单纯形裸题
\(BZOJ\)可过
洛谷被卡。。
#include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdlib>
#include<cstdio>
#include<ctime>
#include<cmath>
#include<map>
#define Redge(u) for (int k = h[u],to; k; k = ed[k].nxt)
#define REP(i,n) for (int i = 1; i <= (n); i++)
#define mp(a,b) make_pair<int,int>(a,b)
#define cls(s) memset(s,0,sizeof(s))
#define cp pair<int,int>
#define LL long long int
using namespace std;
const int maxn = 1005,maxm = 10005;
const double eps = 1e-8,INF = 1e15;
inline int read(){
int out = 0,flag = 1; char c = getchar();
while (c < 48 || c > 57){if (c == '-') flag = -1; c = getchar();}
while (c >= 48 && c <= 57){out = (out << 3) + (out << 1) + c - 48; c = getchar();}
return out * flag;
}
int n,m;
double a[maxm][maxn];
void Pivot(int l,int e){
double t = a[l][e]; a[l][e] = 1;
for (int j = 0; j <= n; j++) a[l][j] /= t;
for (int i = 0; i <= m; i++) if (i != l && fabs(a[i][e]) > eps){
t = a[i][e]; a[i][e] = 0;
for (int j = 0; j <= n; j++)
a[i][j] -= a[l][j] * t;
}
}
void init(){
while (true){
int l = 0,e = 0;
for (int i = 1; i <= m; i++) if (a[i][0] < -eps && (!l || (rand() & 1))) l = i;
if (!l) break;
for (int j = 1; j <= n; j++) if (a[l][j] < -eps && (!e || (rand() & 1))) e = j;
Pivot(l,e);
}
}
void simplex(){
while (true){
int l = 0,e = 0; double mn = INF;
for (int j = 1; j <= n; j++) if (a[0][j] > eps){e = j; break;}
if (!e) break;
for (int i = 1; i <= m; i++) if (a[i][e] > eps && a[i][0] / a[i][e] < mn)
mn= a[i][0] / a[i][e],l = i;
Pivot(l,e);
}
}
int main(){
srand(time(NULL));
n = read(); m = read(); int L,R;
REP(j,n) a[0][j] = -read();
REP(i,m){
L = read(); R = read();
for (int j = L; j <= R; j++)
a[i][j] = -1;
a[i][0] = -read();
}
init(); simplex();
printf("%lld\n",(LL)(a[0][0] + 0.5));
return 0;
}
BZOJ3112 [Zjoi2013]防守战线 【单纯形】的更多相关文章
- 单纯形 BZOJ3112: [Zjoi2013]防守战线
题面自己上网查. 学了一下单纯形.当然 证明什么的 显然是没去学.不然估计就要残废了 上学期已经了解了 什么叫标准型. 听起来高大上 其实没什么 就是加入好多松弛变量+各种*(-1),使得最后成为一般 ...
- BZOJ 3112 Zjoi2013 防守战线 单纯形
题目大意: 单纯形*2.. . #include <cmath> #include <cstdio> #include <cstring> #include < ...
- bzoj3112 [Zjoi2013]防守战线
正解:线性规划. 直接套单纯形的板子,因为所约束条件都是>=号,且目标函数为最小值,所以考虑对偶转换,转置一下原矩阵就好了. //It is made by wfj_2048~ #include ...
- bzoj3550: [ONTAK2010]Vacation&&bzoj3112: [Zjoi2013]防守战线
学了下单纯形法解线性规划 看起来好像并不是特别难,第二个code有注释.我还有...*=-....这个不是特别懂 第一个是正常的,第二个是解对偶问题的 #include<cstdio> # ...
- 【BZOJ3112】[Zjoi2013]防守战线 单纯形法
[BZOJ3112][Zjoi2013]防守战线 题解:依旧是转化成对偶问题,然后敲板子就行了~ 建完表后发现跟志愿者招募的表正好是相反的,感觉很神奇~ #include <cstdio> ...
- ZJOI2013 防守战线
题目 战线可以看作一个长度为\(n\)的序列,现在需要在这个序列上建塔来防守敌兵,在序列第\(i\)号位置上建一座塔有\(C_i\)的花费,且一个位置可以建任意多的塔,费用累加计算.有\(m\)个区间 ...
- BZOJ 3112: [Zjoi2013]防守战线 [单纯形法]
题目描述 战线可以看作一个长度为n 的序列,现在需要在这个序列上建塔来防守敌兵,在序列第i 号位置上建一座塔有Ci 的花费,且一个位置可以建任意多的塔,费用累加计算.有m 个区间[L1, R1], [ ...
- BZOJ 3112 [Zjoi2013]防守战线
题解:单纯形:转化为对偶问题: 对于最大化 cx,满足约束 Ax<=b ,x>0 对偶问题为 最小化 bx,满足约束 ATx>=c ,x>0 (AT为A的转置) 这一题的内存真 ...
- 数学(线性规划): ZJOI2013 防守战线
偷懒用的线性规划. #include <iostream> #include <cstring> #include <cstdio> using namespace ...
随机推荐
- 高可用OpenStack(Queen版)集群-7.Neutron控制/网络节点集群
参考文档: Install-guide:https://docs.openstack.org/install-guide/ OpenStack High Availability Guide:http ...
- nodejs加载模块心得,mongoose的继承,schematype的mixd介绍
1. require("xxx")可以是原生模块, 也可以是根目录“/node_modules”下的某个模块 2. 多个模块的package.json使用同一个相同模块的时候,将改 ...
- node 集群与稳定
node集群搭建好之后,还需要考虑一些细节问题. 性能问题 多个工作进程的存活状态管理 工作进程的平滑重启 配置或者静态数据的动态重新载入 其它细节 1 进程事件 Node子进程对象除了send()方 ...
- [linux] tmux终端复用神器 [转载]
转载https://www.cnblogs.com/kevingrace/p/6496899.html Tmux是一个优秀的终端复用软件,类似GNU Screen,但来自于OpenBSD,采用BSD授 ...
- 虚拟机搭建Hadoop集群
安装包准备 操作系统:ubuntu-16.04.3-desktop-amd64.iso 软件包:VirtualBox 安装包:hadoop-3.0.0.tar.gz,jdk-8u161-linux-x ...
- OGG FOR BIGDATA 安装(修正)
参考:http://docs.oracle.com/goldengate/bd1221/gg-bd/GADBD/toc.htm 一.环境介绍 源:centos6.5 oracl e 11.20.4 ...
- IDEA下载插件超时的原因
setting中红框的对勾去掉就可以下载插件了
- Daily Srum 10.28
这两天我们和其他两组进行了一次会议,主要讨论的是用什么框架来搭建这个平台.在线系统的那一组希望我们用nutch.solr.hbase这一套工具,这对于我们两组来说是一次挑战,毕竟我们一开始用的是关系型 ...
- Java第二次实验20135204
一.实验过程: 1.先创建一个学号命名的文档: 2.一个百分制成绩转化为等级: 3.新建一个包,另一个测试: 4.打开UML,建模软件umbrello进行建模: 相关程序: 5.我的保存: 二.遇到的 ...
- sqlDataAdapter和SqlCommand的区别
因为DataSet是离线的,所以SqlDataAdapter这个对象是连接DataSet和数据库的桥梁,所有对DataSet的操作(填充,更新等)都要通过他 ado.net数据访问有两种方式: 1.离 ...