1、线程池的顶级接口(Executor)

线程池的顶级接口(jdk > 1.5)。仅仅定义了方法execute(Runnable)。

该方法接收一个Runnable实例,用来执行一个任务,该任务即是一个实现Runnable接口的类。

public interface Executor {

    /**
* Executes the given command at some time in the future. The command
* may execute in a new thread, in a pooled thread, or in the calling
* thread, at the discretion of the <tt>Executor</tt> implementation.
*
* @param command the runnable task
* @throws RejectedExecutionException if this task cannot be
* accepted for execution.
* @throws NullPointerException if command is null
*/
void execute(Runnable command);
}

java-API

2、线程池二级接口ExecutorService

interface ExecutorService extends Executor

继承自Executor接口,提供了更多的方法调用

任务有两种: Runnable 可执行的任务, 无返回结果;  Callable 可执行的任务,有返回值。 返回结果可以被Future接受。

  • List<Future> invokeAll(Collect<Callable> tasks)  执行tasks,返回保持任务状态和结果的  Future 列表。
  • List<Future> invokeAll(Collect<Callable> tasks,long timeout,TimeUnit unit)  执行tasks,当所有任务完成或超时(无论哪个首先发生),返回保持任务状态和结果的 Future 列表.
  • T invokeAll(Collect<Callable> tasks,long timeout,TimeUnit unit)  随便执行task,返回其结果
  • void shutdown() 准备关闭,继续执行已提交的任务,但不接受新任务。
  • List<Runable> shutdownNow() 暂停处理正在等待的任务,并返回等待执行的任务列表。
  • Future submit(Callable task)  执行一个任务,返回保持任务状态和结果的 Future
  • Future submit(Runable task,T result)  执行一个任务,完成时返回result作为 结果 Future
/*
* ORACLE PROPRIETARY/CONFIDENTIAL. Use is subject to license terms.
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*/ /*
*
*
*
*
*
* Written by Doug Lea with assistance from members of JCP JSR-166
* Expert Group and released to the public domain, as explained at
* http://creativecommons.org/publicdomain/zero/1.0/
*/ package java.util.concurrent;
import java.util.List;
import java.util.Collection;
import java.security.PrivilegedAction;
import java.security.PrivilegedExceptionAction; /**
* An {@link Executor} that provides methods to manage termination and
* methods that can produce a {@link Future} for tracking progress of
* one or more asynchronous tasks.
*
* <p> An <tt>ExecutorService</tt> can be shut down, which will cause
* it to reject new tasks. Two different methods are provided for
* shutting down an <tt>ExecutorService</tt>. The {@link #shutdown}
* method will allow previously submitted tasks to execute before
* terminating, while the {@link #shutdownNow} method prevents waiting
* tasks from starting and attempts to stop currently executing tasks.
* Upon termination, an executor has no tasks actively executing, no
* tasks awaiting execution, and no new tasks can be submitted. An
* unused <tt>ExecutorService</tt> should be shut down to allow
* reclamation of its resources.
*
* <p> Method <tt>submit</tt> extends base method {@link
* Executor#execute} by creating and returning a {@link Future} that
* can be used to cancel execution and/or wait for completion.
* Methods <tt>invokeAny</tt> and <tt>invokeAll</tt> perform the most
* commonly useful forms of bulk execution, executing a collection of
* tasks and then waiting for at least one, or all, to
* complete. (Class {@link ExecutorCompletionService} can be used to
* write customized variants of these methods.)
*
* <p>The {@link Executors} class provides factory methods for the
* executor services provided in this package.
*
* <h3>Usage Examples</h3>
*
* Here is a sketch of a network service in which threads in a thread
* pool service incoming requests. It uses the preconfigured {@link
* Executors#newFixedThreadPool} factory method:
*
* <pre>
* class NetworkService implements Runnable {
* private final ServerSocket serverSocket;
* private final ExecutorService pool;
*
* public NetworkService(int port, int poolSize)
* throws IOException {
* serverSocket = new ServerSocket(port);
* pool = Executors.newFixedThreadPool(poolSize);
* }
*
* public void run() { // run the service
* try {
* for (;;) {
* pool.execute(new Handler(serverSocket.accept()));
* }
* } catch (IOException ex) {
* pool.shutdown();
* }
* }
* }
*
* class Handler implements Runnable {
* private final Socket socket;
* Handler(Socket socket) { this.socket = socket; }
* public void run() {
* // read and service request on socket
* }
* }
* </pre>
*
* The following method shuts down an <tt>ExecutorService</tt> in two phases,
* first by calling <tt>shutdown</tt> to reject incoming tasks, and then
* calling <tt>shutdownNow</tt>, if necessary, to cancel any lingering tasks:
*
* <pre>
* void shutdownAndAwaitTermination(ExecutorService pool) {
* pool.shutdown(); // Disable new tasks from being submitted
* try {
* // Wait a while for existing tasks to terminate
* if (!pool.awaitTermination(60, TimeUnit.SECONDS)) {
* pool.shutdownNow(); // Cancel currently executing tasks
* // Wait a while for tasks to respond to being cancelled
* if (!pool.awaitTermination(60, TimeUnit.SECONDS))
* System.err.println("Pool did not terminate");
* }
* } catch (InterruptedException ie) {
* // (Re-)Cancel if current thread also interrupted
* pool.shutdownNow();
* // Preserve interrupt status
* Thread.currentThread().interrupt();
* }
* }
* </pre>
*
* <p>Memory consistency effects: Actions in a thread prior to the
* submission of a {@code Runnable} or {@code Callable} task to an
* {@code ExecutorService}
* <a href="package-summary.html#MemoryVisibility"><i>happen-before</i></a>
* any actions taken by that task, which in turn <i>happen-before</i> the
* result is retrieved via {@code Future.get()}.
*
* @since 1.5
* @author Doug Lea
*/
public interface ExecutorService extends Executor { /**
* Initiates an orderly shutdown in which previously submitted
* tasks are executed, but no new tasks will be accepted.
* Invocation has no additional effect if already shut down.
*
* <p>This method does not wait for previously submitted tasks to
* complete execution. Use {@link #awaitTermination awaitTermination}
* to do that.
*
* @throws SecurityException if a security manager exists and
* shutting down this ExecutorService may manipulate
* threads that the caller is not permitted to modify
* because it does not hold {@link
* java.lang.RuntimePermission}<tt>("modifyThread")</tt>,
* or the security manager's <tt>checkAccess</tt> method
* denies access.
*/
void shutdown(); /**
* Attempts to stop all actively executing tasks, halts the
* processing of waiting tasks, and returns a list of the tasks
* that were awaiting execution.
*
* <p>This method does not wait for actively executing tasks to
* terminate. Use {@link #awaitTermination awaitTermination} to
* do that.
*
* <p>There are no guarantees beyond best-effort attempts to stop
* processing actively executing tasks. For example, typical
* implementations will cancel via {@link Thread#interrupt}, so any
* task that fails to respond to interrupts may never terminate.
*
* @return list of tasks that never commenced execution
* @throws SecurityException if a security manager exists and
* shutting down this ExecutorService may manipulate
* threads that the caller is not permitted to modify
* because it does not hold {@link
* java.lang.RuntimePermission}<tt>("modifyThread")</tt>,
* or the security manager's <tt>checkAccess</tt> method
* denies access.
*/
List<Runnable> shutdownNow(); /**
* Returns <tt>true</tt> if this executor has been shut down.
*
* @return <tt>true</tt> if this executor has been shut down
*/
boolean isShutdown(); /**
* Returns <tt>true</tt> if all tasks have completed following shut down.
* Note that <tt>isTerminated</tt> is never <tt>true</tt> unless
* either <tt>shutdown</tt> or <tt>shutdownNow</tt> was called first.
*
* @return <tt>true</tt> if all tasks have completed following shut down
*/
boolean isTerminated(); /**
* Blocks until all tasks have completed execution after a shutdown
* request, or the timeout occurs, or the current thread is
* interrupted, whichever happens first.
*
* @param timeout the maximum time to wait
* @param unit the time unit of the timeout argument
* @return <tt>true</tt> if this executor terminated and
* <tt>false</tt> if the timeout elapsed before termination
* @throws InterruptedException if interrupted while waiting
*/
boolean awaitTermination(long timeout, TimeUnit unit)
throws InterruptedException; /**
* Submits a value-returning task for execution and returns a
* Future representing the pending results of the task. The
* Future's <tt>get</tt> method will return the task's result upon
* successful completion.
*
* <p>
* If you would like to immediately block waiting
* for a task, you can use constructions of the form
* <tt>result = exec.submit(aCallable).get();</tt>
*
* <p> Note: The {@link Executors} class includes a set of methods
* that can convert some other common closure-like objects,
* for example, {@link java.security.PrivilegedAction} to
* {@link Callable} form so they can be submitted.
*
* @param task the task to submit
* @return a Future representing pending completion of the task
* @throws RejectedExecutionException if the task cannot be
* scheduled for execution
* @throws NullPointerException if the task is null
*/
<T> Future<T> submit(Callable<T> task); /**
* Submits a Runnable task for execution and returns a Future
* representing that task. The Future's <tt>get</tt> method will
* return the given result upon successful completion.
*
* @param task the task to submit
* @param result the result to return
* @return a Future representing pending completion of the task
* @throws RejectedExecutionException if the task cannot be
* scheduled for execution
* @throws NullPointerException if the task is null
*/
<T> Future<T> submit(Runnable task, T result); /**
* Submits a Runnable task for execution and returns a Future
* representing that task. The Future's <tt>get</tt> method will
* return <tt>null</tt> upon <em>successful</em> completion.
*
* @param task the task to submit
* @return a Future representing pending completion of the task
* @throws RejectedExecutionException if the task cannot be
* scheduled for execution
* @throws NullPointerException if the task is null
*/
Future<?> submit(Runnable task); /**
* Executes the given tasks, returning a list of Futures holding
* their status and results when all complete.
* {@link Future#isDone} is <tt>true</tt> for each
* element of the returned list.
* Note that a <em>completed</em> task could have
* terminated either normally or by throwing an exception.
* The results of this method are undefined if the given
* collection is modified while this operation is in progress.
*
* @param tasks the collection of tasks
* @return A list of Futures representing the tasks, in the same
* sequential order as produced by the iterator for the
* given task list, each of which has completed.
* @throws InterruptedException if interrupted while waiting, in
* which case unfinished tasks are cancelled.
* @throws NullPointerException if tasks or any of its elements are <tt>null</tt>
* @throws RejectedExecutionException if any task cannot be
* scheduled for execution
*/ <T> List<Future<T>> invokeAll(Collection<? extends Callable<T>> tasks)
throws InterruptedException; /**
* Executes the given tasks, returning a list of Futures holding
* their status and results
* when all complete or the timeout expires, whichever happens first.
* {@link Future#isDone} is <tt>true</tt> for each
* element of the returned list.
* Upon return, tasks that have not completed are cancelled.
* Note that a <em>completed</em> task could have
* terminated either normally or by throwing an exception.
* The results of this method are undefined if the given
* collection is modified while this operation is in progress.
*
* @param tasks the collection of tasks
* @param timeout the maximum time to wait
* @param unit the time unit of the timeout argument
* @return a list of Futures representing the tasks, in the same
* sequential order as produced by the iterator for the
* given task list. If the operation did not time out,
* each task will have completed. If it did time out, some
* of these tasks will not have completed.
* @throws InterruptedException if interrupted while waiting, in
* which case unfinished tasks are cancelled
* @throws NullPointerException if tasks, any of its elements, or
* unit are <tt>null</tt>
* @throws RejectedExecutionException if any task cannot be scheduled
* for execution
*/
<T> List<Future<T>> invokeAll(Collection<? extends Callable<T>> tasks,
long timeout, TimeUnit unit)
throws InterruptedException; /**
* Executes the given tasks, returning the result
* of one that has completed successfully (i.e., without throwing
* an exception), if any do. Upon normal or exceptional return,
* tasks that have not completed are cancelled.
* The results of this method are undefined if the given
* collection is modified while this operation is in progress.
*
* @param tasks the collection of tasks
* @return the result returned by one of the tasks
* @throws InterruptedException if interrupted while waiting
* @throws NullPointerException if tasks or any element task
* subject to execution is <tt>null</tt>
* @throws IllegalArgumentException if tasks is empty
* @throws ExecutionException if no task successfully completes
* @throws RejectedExecutionException if tasks cannot be scheduled
* for execution
*/
<T> T invokeAny(Collection<? extends Callable<T>> tasks)
throws InterruptedException, ExecutionException; /**
* Executes the given tasks, returning the result
* of one that has completed successfully (i.e., without throwing
* an exception), if any do before the given timeout elapses.
* Upon normal or exceptional return, tasks that have not
* completed are cancelled.
* The results of this method are undefined if the given
* collection is modified while this operation is in progress.
*
* @param tasks the collection of tasks
* @param timeout the maximum time to wait
* @param unit the time unit of the timeout argument
* @return the result returned by one of the tasks.
* @throws InterruptedException if interrupted while waiting
* @throws NullPointerException if tasks, or unit, or any element
* task subject to execution is <tt>null</tt>
* @throws TimeoutException if the given timeout elapses before
* any task successfully completes
* @throws ExecutionException if no task successfully completes
* @throws RejectedExecutionException if tasks cannot be scheduled
* for execution
*/
<T> T invokeAny(Collection<? extends Callable<T>> tasks,
long timeout, TimeUnit unit)
throws InterruptedException, ExecutionException, TimeoutException;
}

java-API

3、线程池计划任务ScheduledExecutorService

ScheduledExecutorService extends ExecutorService

是一个抽象类,可以 定时、 定期 执行任务

  • ScheduleFuture<V> schedule(Callable<V> callable, long delay, TimeUnit unit)  在delay时间后 执行callable任务
  • ScheduleFuture schedule(Runnable runnable, long delay, TimeUnit unit)  在delay时间后 执行runnable任务
  • ScheduleFuture scheduleAtFixedRate(Runnable runnable, long initTime,long period, TimeUnit unit)  在initTime时间后 执行runnable任务,然后在init+period后再次执行,在inti+period*2后再次执行。。。。。
  • ScheduleFuture scheduleWithFixedDely(Runnable runnable, long initTime,long delay, TimeUnit unit)  在initTime时间后 执行runnable任务,完毕后,在delay后再次执行

java-API

4、线程池工具Executors

这个工具类相当强大, 可以创建FixedThreadPool、CachedThreadPool、ScheduledThreadPool、SingleThreadExceutor 、callable(Runnable转为callable)

默认返回:ExecutorService 或 ScheduledExecutorService,极大的省去了复杂的创建工作。单元测试场景非常实用。

使用起来方便

        ScheduledExecutorService scheduledExecutorService1 = Executors.newScheduledThreadPool(12);// 12个核心线程
ExecutorService executorService2 = Executors.newFixedThreadPool(10);// 10个核心线程
ExecutorService executorService1 = Executors.newSingleThreadExecutor();// 单个线程
ExecutorService executorService = Executors.newCachedThreadPool(); // 根据任务无限增加线程,存活60s,无任务则销毁
Callable<Object> callable1 = Executors.callable(privilegedAction);
Callable<Object> callable2 = Executors.callable(a);
Object call = callable1.call();
/*
* ORACLE PROPRIETARY/CONFIDENTIAL. Use is subject to license terms.
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*/ /*
*
*
*
*
*
* Written by Doug Lea with assistance from members of JCP JSR-166
* Expert Group and released to the public domain, as explained at
* http://creativecommons.org/publicdomain/zero/1.0/
*/ package java.util.concurrent;
import java.util.*;
import java.util.concurrent.atomic.AtomicInteger;
import java.security.AccessControlContext;
import java.security.AccessController;
import java.security.PrivilegedAction;
import java.security.PrivilegedExceptionAction;
import java.security.PrivilegedActionException;
import java.security.AccessControlException;
import sun.security.util.SecurityConstants; /**
* Factory and utility methods for {@link Executor}, {@link
* ExecutorService}, {@link ScheduledExecutorService}, {@link
* ThreadFactory}, and {@link Callable} classes defined in this
* package. This class supports the following kinds of methods:
*
* <ul>
* <li> Methods that create and return an {@link ExecutorService}
* set up with commonly useful configuration settings.
* <li> Methods that create and return a {@link ScheduledExecutorService}
* set up with commonly useful configuration settings.
* <li> Methods that create and return a "wrapped" ExecutorService, that
* disables reconfiguration by making implementation-specific methods
* inaccessible.
* <li> Methods that create and return a {@link ThreadFactory}
* that sets newly created threads to a known state.
* <li> Methods that create and return a {@link Callable}
* out of other closure-like forms, so they can be used
* in execution methods requiring <tt>Callable</tt>.
* </ul>
*
* @since 1.5
* @author Doug Lea
*/
public class Executors { /**
* Creates a thread pool that reuses a fixed number of threads
* operating off a shared unbounded queue. At any point, at most
* <tt>nThreads</tt> threads will be active processing tasks.
* If additional tasks are submitted when all threads are active,
* they will wait in the queue until a thread is available.
* If any thread terminates due to a failure during execution
* prior to shutdown, a new one will take its place if needed to
* execute subsequent tasks. The threads in the pool will exist
* until it is explicitly {@link ExecutorService#shutdown shutdown}.
*
* @param nThreads the number of threads in the pool
* @return the newly created thread pool
* @throws IllegalArgumentException if {@code nThreads <= 0}
*/
public static ExecutorService newFixedThreadPool(int nThreads) {
return new ThreadPoolExecutor(nThreads, nThreads,
0L, TimeUnit.MILLISECONDS,
new LinkedBlockingQueue<Runnable>());
} /**
* Creates a thread pool that reuses a fixed number of threads
* operating off a shared unbounded queue, using the provided
* ThreadFactory to create new threads when needed. At any point,
* at most <tt>nThreads</tt> threads will be active processing
* tasks. If additional tasks are submitted when all threads are
* active, they will wait in the queue until a thread is
* available. If any thread terminates due to a failure during
* execution prior to shutdown, a new one will take its place if
* needed to execute subsequent tasks. The threads in the pool will
* exist until it is explicitly {@link ExecutorService#shutdown
* shutdown}.
*
* @param nThreads the number of threads in the pool
* @param threadFactory the factory to use when creating new threads
* @return the newly created thread pool
* @throws NullPointerException if threadFactory is null
* @throws IllegalArgumentException if {@code nThreads <= 0}
*/
public static ExecutorService newFixedThreadPool(int nThreads, ThreadFactory threadFactory) {
return new ThreadPoolExecutor(nThreads, nThreads,
0L, TimeUnit.MILLISECONDS,
new LinkedBlockingQueue<Runnable>(),
threadFactory);
} /**
* Creates an Executor that uses a single worker thread operating
* off an unbounded queue. (Note however that if this single
* thread terminates due to a failure during execution prior to
* shutdown, a new one will take its place if needed to execute
* subsequent tasks.) Tasks are guaranteed to execute
* sequentially, and no more than one task will be active at any
* given time. Unlike the otherwise equivalent
* <tt>newFixedThreadPool(1)</tt> the returned executor is
* guaranteed not to be reconfigurable to use additional threads.
*
* @return the newly created single-threaded Executor
*/
public static ExecutorService newSingleThreadExecutor() {
return new FinalizableDelegatedExecutorService
(new ThreadPoolExecutor(1, 1,
0L, TimeUnit.MILLISECONDS,
new LinkedBlockingQueue<Runnable>()));
} /**
* Creates an Executor that uses a single worker thread operating
* off an unbounded queue, and uses the provided ThreadFactory to
* create a new thread when needed. Unlike the otherwise
* equivalent <tt>newFixedThreadPool(1, threadFactory)</tt> the
* returned executor is guaranteed not to be reconfigurable to use
* additional threads.
*
* @param threadFactory the factory to use when creating new
* threads
*
* @return the newly created single-threaded Executor
* @throws NullPointerException if threadFactory is null
*/
public static ExecutorService newSingleThreadExecutor(ThreadFactory threadFactory) {
return new FinalizableDelegatedExecutorService
(new ThreadPoolExecutor(1, 1,
0L, TimeUnit.MILLISECONDS,
new LinkedBlockingQueue<Runnable>(),
threadFactory));
} /**
* Creates a thread pool that creates new threads as needed, but
* will reuse previously constructed threads when they are
* available. These pools will typically improve the performance
* of programs that execute many short-lived asynchronous tasks.
* Calls to <tt>execute</tt> will reuse previously constructed
* threads if available. If no existing thread is available, a new
* thread will be created and added to the pool. Threads that have
* not been used for sixty seconds are terminated and removed from
* the cache. Thus, a pool that remains idle for long enough will
* not consume any resources. Note that pools with similar
* properties but different details (for example, timeout parameters)
* may be created using {@link ThreadPoolExecutor} constructors.
*
* @return the newly created thread pool
*/
public static ExecutorService newCachedThreadPool() {
return new ThreadPoolExecutor(0, Integer.MAX_VALUE,
60L, TimeUnit.SECONDS,
new SynchronousQueue<Runnable>());
} /**
* Creates a thread pool that creates new threads as needed, but
* will reuse previously constructed threads when they are
* available, and uses the provided
* ThreadFactory to create new threads when needed.
* @param threadFactory the factory to use when creating new threads
* @return the newly created thread pool
* @throws NullPointerException if threadFactory is null
*/
public static ExecutorService newCachedThreadPool(ThreadFactory threadFactory) {
return new ThreadPoolExecutor(0, Integer.MAX_VALUE,
60L, TimeUnit.SECONDS,
new SynchronousQueue<Runnable>(),
threadFactory);
} /**
* Creates a single-threaded executor that can schedule commands
* to run after a given delay, or to execute periodically.
* (Note however that if this single
* thread terminates due to a failure during execution prior to
* shutdown, a new one will take its place if needed to execute
* subsequent tasks.) Tasks are guaranteed to execute
* sequentially, and no more than one task will be active at any
* given time. Unlike the otherwise equivalent
* <tt>newScheduledThreadPool(1)</tt> the returned executor is
* guaranteed not to be reconfigurable to use additional threads.
* @return the newly created scheduled executor
*/
public static ScheduledExecutorService newSingleThreadScheduledExecutor() {
return new DelegatedScheduledExecutorService
(new ScheduledThreadPoolExecutor(1));
} /**
* Creates a single-threaded executor that can schedule commands
* to run after a given delay, or to execute periodically. (Note
* however that if this single thread terminates due to a failure
* during execution prior to shutdown, a new one will take its
* place if needed to execute subsequent tasks.) Tasks are
* guaranteed to execute sequentially, and no more than one task
* will be active at any given time. Unlike the otherwise
* equivalent <tt>newScheduledThreadPool(1, threadFactory)</tt>
* the returned executor is guaranteed not to be reconfigurable to
* use additional threads.
* @param threadFactory the factory to use when creating new
* threads
* @return a newly created scheduled executor
* @throws NullPointerException if threadFactory is null
*/
public static ScheduledExecutorService newSingleThreadScheduledExecutor(ThreadFactory threadFactory) {
return new DelegatedScheduledExecutorService
(new ScheduledThreadPoolExecutor(1, threadFactory));
} /**
* Creates a thread pool that can schedule commands to run after a
* given delay, or to execute periodically.
* @param corePoolSize the number of threads to keep in the pool,
* even if they are idle.
* @return a newly created scheduled thread pool
* @throws IllegalArgumentException if {@code corePoolSize < 0}
*/
public static ScheduledExecutorService newScheduledThreadPool(int corePoolSize) {
return new ScheduledThreadPoolExecutor(corePoolSize);
} /**
* Creates a thread pool that can schedule commands to run after a
* given delay, or to execute periodically.
* @param corePoolSize the number of threads to keep in the pool,
* even if they are idle.
* @param threadFactory the factory to use when the executor
* creates a new thread.
* @return a newly created scheduled thread pool
* @throws IllegalArgumentException if {@code corePoolSize < 0}
* @throws NullPointerException if threadFactory is null
*/
public static ScheduledExecutorService newScheduledThreadPool(
int corePoolSize, ThreadFactory threadFactory) {
return new ScheduledThreadPoolExecutor(corePoolSize, threadFactory);
} /**
* Returns an object that delegates all defined {@link
* ExecutorService} methods to the given executor, but not any
* other methods that might otherwise be accessible using
* casts. This provides a way to safely "freeze" configuration and
* disallow tuning of a given concrete implementation.
* @param executor the underlying implementation
* @return an <tt>ExecutorService</tt> instance
* @throws NullPointerException if executor null
*/
public static ExecutorService unconfigurableExecutorService(ExecutorService executor) {
if (executor == null)
throw new NullPointerException();
return new DelegatedExecutorService(executor);
} /**
* Returns an object that delegates all defined {@link
* ScheduledExecutorService} methods to the given executor, but
* not any other methods that might otherwise be accessible using
* casts. This provides a way to safely "freeze" configuration and
* disallow tuning of a given concrete implementation.
* @param executor the underlying implementation
* @return a <tt>ScheduledExecutorService</tt> instance
* @throws NullPointerException if executor null
*/
public static ScheduledExecutorService unconfigurableScheduledExecutorService(ScheduledExecutorService executor) {
if (executor == null)
throw new NullPointerException();
return new DelegatedScheduledExecutorService(executor);
} /**
* Returns a default thread factory used to create new threads.
* This factory creates all new threads used by an Executor in the
* same {@link ThreadGroup}. If there is a {@link
* java.lang.SecurityManager}, it uses the group of {@link
* System#getSecurityManager}, else the group of the thread
* invoking this <tt>defaultThreadFactory</tt> method. Each new
* thread is created as a non-daemon thread with priority set to
* the smaller of <tt>Thread.NORM_PRIORITY</tt> and the maximum
* priority permitted in the thread group. New threads have names
* accessible via {@link Thread#getName} of
* <em>pool-N-thread-M</em>, where <em>N</em> is the sequence
* number of this factory, and <em>M</em> is the sequence number
* of the thread created by this factory.
* @return a thread factory
*/
public static ThreadFactory defaultThreadFactory() {
return new DefaultThreadFactory();
} /**
* Returns a thread factory used to create new threads that
* have the same permissions as the current thread.
* This factory creates threads with the same settings as {@link
* Executors#defaultThreadFactory}, additionally setting the
* AccessControlContext and contextClassLoader of new threads to
* be the same as the thread invoking this
* <tt>privilegedThreadFactory</tt> method. A new
* <tt>privilegedThreadFactory</tt> can be created within an
* {@link AccessController#doPrivileged} action setting the
* current thread's access control context to create threads with
* the selected permission settings holding within that action.
*
* <p> Note that while tasks running within such threads will have
* the same access control and class loader settings as the
* current thread, they need not have the same {@link
* java.lang.ThreadLocal} or {@link
* java.lang.InheritableThreadLocal} values. If necessary,
* particular values of thread locals can be set or reset before
* any task runs in {@link ThreadPoolExecutor} subclasses using
* {@link ThreadPoolExecutor#beforeExecute}. Also, if it is
* necessary to initialize worker threads to have the same
* InheritableThreadLocal settings as some other designated
* thread, you can create a custom ThreadFactory in which that
* thread waits for and services requests to create others that
* will inherit its values.
*
* @return a thread factory
* @throws AccessControlException if the current access control
* context does not have permission to both get and set context
* class loader.
*/
public static ThreadFactory privilegedThreadFactory() {
return new PrivilegedThreadFactory();
} /**
* Returns a {@link Callable} object that, when
* called, runs the given task and returns the given result. This
* can be useful when applying methods requiring a
* <tt>Callable</tt> to an otherwise resultless action.
* @param task the task to run
* @param result the result to return
* @return a callable object
* @throws NullPointerException if task null
*/
public static <T> Callable<T> callable(Runnable task, T result) {
if (task == null)
throw new NullPointerException();
return new RunnableAdapter<T>(task, result);
} /**
* Returns a {@link Callable} object that, when
* called, runs the given task and returns <tt>null</tt>.
* @param task the task to run
* @return a callable object
* @throws NullPointerException if task null
*/
public static Callable<Object> callable(Runnable task) {
if (task == null)
throw new NullPointerException();
return new RunnableAdapter<Object>(task, null);
} /**
* Returns a {@link Callable} object that, when
* called, runs the given privileged action and returns its result.
* @param action the privileged action to run
* @return a callable object
* @throws NullPointerException if action null
*/
public static Callable<Object> callable(final PrivilegedAction<?> action) {
if (action == null)
throw new NullPointerException();
return new Callable<Object>() {
public Object call() { return action.run(); }};
} /**
* Returns a {@link Callable} object that, when
* called, runs the given privileged exception action and returns
* its result.
* @param action the privileged exception action to run
* @return a callable object
* @throws NullPointerException if action null
*/
public static Callable<Object> callable(final PrivilegedExceptionAction<?> action) {
if (action == null)
throw new NullPointerException();
return new Callable<Object>() {
public Object call() throws Exception { return action.run(); }};
} /**
* Returns a {@link Callable} object that will, when
* called, execute the given <tt>callable</tt> under the current
* access control context. This method should normally be
* invoked within an {@link AccessController#doPrivileged} action
* to create callables that will, if possible, execute under the
* selected permission settings holding within that action; or if
* not possible, throw an associated {@link
* AccessControlException}.
* @param callable the underlying task
* @return a callable object
* @throws NullPointerException if callable null
*
*/
public static <T> Callable<T> privilegedCallable(Callable<T> callable) {
if (callable == null)
throw new NullPointerException();
return new PrivilegedCallable<T>(callable);
} /**
* Returns a {@link Callable} object that will, when
* called, execute the given <tt>callable</tt> under the current
* access control context, with the current context class loader
* as the context class loader. This method should normally be
* invoked within an {@link AccessController#doPrivileged} action
* to create callables that will, if possible, execute under the
* selected permission settings holding within that action; or if
* not possible, throw an associated {@link
* AccessControlException}.
* @param callable the underlying task
*
* @return a callable object
* @throws NullPointerException if callable null
* @throws AccessControlException if the current access control
* context does not have permission to both set and get context
* class loader.
*/
public static <T> Callable<T> privilegedCallableUsingCurrentClassLoader(Callable<T> callable) {
if (callable == null)
throw new NullPointerException();
return new PrivilegedCallableUsingCurrentClassLoader<T>(callable);
} // Non-public classes supporting the public methods /**
* A callable that runs given task and returns given result
*/
static final class RunnableAdapter<T> implements Callable<T> {
final Runnable task;
final T result;
RunnableAdapter(Runnable task, T result) {
this.task = task;
this.result = result;
}
public T call() {
task.run();
return result;
}
} /**
* A callable that runs under established access control settings
*/
static final class PrivilegedCallable<T> implements Callable<T> {
private final Callable<T> task;
private final AccessControlContext acc; PrivilegedCallable(Callable<T> task) {
this.task = task;
this.acc = AccessController.getContext();
} public T call() throws Exception {
try {
return AccessController.doPrivileged(
new PrivilegedExceptionAction<T>() {
public T run() throws Exception {
return task.call();
}
}, acc);
} catch (PrivilegedActionException e) {
throw e.getException();
}
}
} /**
* A callable that runs under established access control settings and
* current ClassLoader
*/
static final class PrivilegedCallableUsingCurrentClassLoader<T> implements Callable<T> {
private final Callable<T> task;
private final AccessControlContext acc;
private final ClassLoader ccl; PrivilegedCallableUsingCurrentClassLoader(Callable<T> task) {
SecurityManager sm = System.getSecurityManager();
if (sm != null) {
// Calls to getContextClassLoader from this class
// never trigger a security check, but we check
// whether our callers have this permission anyways.
sm.checkPermission(SecurityConstants.GET_CLASSLOADER_PERMISSION); // Whether setContextClassLoader turns out to be necessary
// or not, we fail fast if permission is not available.
sm.checkPermission(new RuntimePermission("setContextClassLoader"));
}
this.task = task;
this.acc = AccessController.getContext();
this.ccl = Thread.currentThread().getContextClassLoader();
} public T call() throws Exception {
try {
return AccessController.doPrivileged(
new PrivilegedExceptionAction<T>() {
public T run() throws Exception {
Thread t = Thread.currentThread();
ClassLoader cl = t.getContextClassLoader();
if (ccl == cl) {
return task.call();
} else {
t.setContextClassLoader(ccl);
try {
return task.call();
} finally {
t.setContextClassLoader(cl);
}
}
}
}, acc);
} catch (PrivilegedActionException e) {
throw e.getException();
}
}
} /**
* The default thread factory
*/
static class DefaultThreadFactory implements ThreadFactory {
private static final AtomicInteger poolNumber = new AtomicInteger(1);
private final ThreadGroup group;
private final AtomicInteger threadNumber = new AtomicInteger(1);
private final String namePrefix; DefaultThreadFactory() {
SecurityManager s = System.getSecurityManager();
group = (s != null) ? s.getThreadGroup() :
Thread.currentThread().getThreadGroup();
namePrefix = "pool-" +
poolNumber.getAndIncrement() +
"-thread-";
} public Thread newThread(Runnable r) {
Thread t = new Thread(group, r,
namePrefix + threadNumber.getAndIncrement(),
0);
if (t.isDaemon())
t.setDaemon(false);
if (t.getPriority() != Thread.NORM_PRIORITY)
t.setPriority(Thread.NORM_PRIORITY);
return t;
}
} /**
* Thread factory capturing access control context and class loader
*/
static class PrivilegedThreadFactory extends DefaultThreadFactory {
private final AccessControlContext acc;
private final ClassLoader ccl; PrivilegedThreadFactory() {
super();
SecurityManager sm = System.getSecurityManager();
if (sm != null) {
// Calls to getContextClassLoader from this class
// never trigger a security check, but we check
// whether our callers have this permission anyways.
sm.checkPermission(SecurityConstants.GET_CLASSLOADER_PERMISSION); // Fail fast
sm.checkPermission(new RuntimePermission("setContextClassLoader"));
}
this.acc = AccessController.getContext();
this.ccl = Thread.currentThread().getContextClassLoader();
} public Thread newThread(final Runnable r) {
return super.newThread(new Runnable() {
public void run() {
AccessController.doPrivileged(new PrivilegedAction<Void>() {
public Void run() {
Thread.currentThread().setContextClassLoader(ccl);
r.run();
return null;
}
}, acc);
}
});
}
} /**
* A wrapper class that exposes only the ExecutorService methods
* of an ExecutorService implementation.
*/
static class DelegatedExecutorService extends AbstractExecutorService {
private final ExecutorService e;
DelegatedExecutorService(ExecutorService executor) { e = executor; }
public void execute(Runnable command) { e.execute(command); }
public void shutdown() { e.shutdown(); }
public List<Runnable> shutdownNow() { return e.shutdownNow(); }
public boolean isShutdown() { return e.isShutdown(); }
public boolean isTerminated() { return e.isTerminated(); }
public boolean awaitTermination(long timeout, TimeUnit unit)
throws InterruptedException {
return e.awaitTermination(timeout, unit);
}
public Future<?> submit(Runnable task) {
return e.submit(task);
}
public <T> Future<T> submit(Callable<T> task) {
return e.submit(task);
}
public <T> Future<T> submit(Runnable task, T result) {
return e.submit(task, result);
}
public <T> List<Future<T>> invokeAll(Collection<? extends Callable<T>> tasks)
throws InterruptedException {
return e.invokeAll(tasks);
}
public <T> List<Future<T>> invokeAll(Collection<? extends Callable<T>> tasks,
long timeout, TimeUnit unit)
throws InterruptedException {
return e.invokeAll(tasks, timeout, unit);
}
public <T> T invokeAny(Collection<? extends Callable<T>> tasks)
throws InterruptedException, ExecutionException {
return e.invokeAny(tasks);
}
public <T> T invokeAny(Collection<? extends Callable<T>> tasks,
long timeout, TimeUnit unit)
throws InterruptedException, ExecutionException, TimeoutException {
return e.invokeAny(tasks, timeout, unit);
}
} static class FinalizableDelegatedExecutorService
extends DelegatedExecutorService {
FinalizableDelegatedExecutorService(ExecutorService executor) {
super(executor);
}
protected void finalize() {
super.shutdown();
}
} /**
* A wrapper class that exposes only the ScheduledExecutorService
* methods of a ScheduledExecutorService implementation.
*/
static class DelegatedScheduledExecutorService
extends DelegatedExecutorService
implements ScheduledExecutorService {
private final ScheduledExecutorService e;
DelegatedScheduledExecutorService(ScheduledExecutorService executor) {
super(executor);
e = executor;
}
public ScheduledFuture<?> schedule(Runnable command, long delay, TimeUnit unit) {
return e.schedule(command, delay, unit);
}
public <V> ScheduledFuture<V> schedule(Callable<V> callable, long delay, TimeUnit unit) {
return e.schedule(callable, delay, unit);
}
public ScheduledFuture<?> scheduleAtFixedRate(Runnable command, long initialDelay, long period, TimeUnit unit) {
return e.scheduleAtFixedRate(command, initialDelay, period, unit);
}
public ScheduledFuture<?> scheduleWithFixedDelay(Runnable command, long initialDelay, long delay, TimeUnit unit) {
return e.scheduleWithFixedDelay(command, initialDelay, delay, unit);
}
} /** Cannot instantiate. */
private Executors() {}
}

java-API

5、线程池根基ThreadPoolExecutor

ThreadPoolExecutor extends AbstractExecutorService

AbstractExecutorService implements ExecutorService

工具类可以创建n种线程,那么这些线程实质还是来自于ThreadPoolExecutor类。

public ThreadPoolExecutor(int corePoolSize,//核心线程池大小
int maximumPoolSize,//最大线程池大小
long keepAliveTime,//线程池中超过corePoolSize数目的空闲线程最大存活时间
TimeUnit unit,//keepAliveTime的时间单位
BlockingQueue<Runnable> workQueue,//任务堆积时,进入任务队列
ThreadFactory threadFactory,//线程工厂,可null
RejectedExecutionHandler handler) {//当提交任务数超过maxmumPoolSize+workQueue之和时,任务会交给RejectedExecutionHandler来处理,可null
if (corePoolSize < 0 ||
maximumPoolSize <= 0 ||
maximumPoolSize < corePoolSize ||
keepAliveTime < 0)
throw new IllegalArgumentException();
if (workQueue == null || threadFactory == null || handler == null)
throw new NullPointerException();
this.corePoolSize = corePoolSize;
this.maximumPoolSize = maximumPoolSize;
this.workQueue = workQueue;
this.keepAliveTime = unit.toNanos(keepAliveTime);
this.threadFactory = threadFactory;
this.handler = handler;
}

其中比较容易让人误解的是:corePoolSize,maximumPoolSize,workQueue之间关系。

1.当线程池小于corePoolSize时,新提交任务将创建一个新线程执行任务,即使此时线程池中存在空闲线程。

2.当线程池达到corePoolSize时,新提交任务将被放入workQueue中,等待线程池中任务调度执行

3.当workQueue已满,且maximumPoolSize>corePoolSize时,新提交任务会创建新线程执行任务

4.当线程池中超过corePoolSize线程,空闲时间达到keepAliveTime时,关闭空闲线程

5.当设置allowCoreThreadTimeOut(true)时,线程池中corePoolSize线程空闲时间达到keepAliveTime也将关闭

6.当提交任务数超过maximumPoolSize+workQueue.size时,新提交任务由RejectedExecutionHandler处理

 RejectedExecutionHandler(饱和策略)

当队列和线程池都满了,说明线程池处于饱和状态,那么必须采取一种策略处理提交的新任务。这个策略默认情况下是AbortPolicy

如: ThreadPoolExecutor.AbortPolicy

  • AbortPolicy:直接抛出异常

  • CallerRunsPolicy:直接使用 调用线程(主线程) 来运行任务,如果主线程关闭,则丢弃该任务。
  • DiscardOldestPolicy:丢弃队列里最旧的任务。
  • DiscardPolicy:不再接受新任务(不处理丢弃掉)。
  • 自定义:当然也可以根据应用场景需要来实现RejectedExecutionHandler接口自定义策略。如记录日志或持久化不能处理的任务

java-API

java线程池赏析的更多相关文章

  1. Java 线程池框架核心代码分析--转

    原文地址:http://www.codeceo.com/article/java-thread-pool-kernal.html 前言 多线程编程中,为每个任务分配一个线程是不现实的,线程创建的开销和 ...

  2. Java线程池使用说明

    Java线程池使用说明 转自:http://blog.csdn.net/sd0902/article/details/8395677 一简介 线程的使用在java中占有极其重要的地位,在jdk1.4极 ...

  3. (转载)JAVA线程池管理

    平时的开发中线程是个少不了的东西,比如tomcat里的servlet就是线程,没有线程我们如何提供多用户访问呢?不过很多刚开始接触线程的开发攻城师却在这个上面吃了不少苦头.怎么做一套简便的线程开发模式 ...

  4. Java线程池的那些事

    熟悉java多线程的朋友一定十分了解java的线程池,jdk中的核心实现类为java.util.concurrent.ThreadPoolExecutor.大家可能了解到它的原理,甚至看过它的源码:但 ...

  5. 四种Java线程池用法解析

    本文为大家分析四种Java线程池用法,供大家参考,具体内容如下 http://www.jb51.net/article/81843.htm 1.new Thread的弊端 执行一个异步任务你还只是如下 ...

  6. Java线程池的几种实现 及 常见问题讲解

    工作中,经常会涉及到线程.比如有些任务,经常会交与线程去异步执行.抑或服务端程序为每个请求单独建立一个线程处理任务.线程之外的,比如我们用的数据库连接.这些创建销毁或者打开关闭的操作,非常影响系统性能 ...

  7. Java线程池应用

    Executors工具类用于创建Java线程池和定时器. newFixedThreadPool:创建一个可重用固定线程数的线程池,以共享的无界队列方式来运行这些线程.在任意点,在大多数 nThread ...

  8. Java线程池的原理及几类线程池的介绍

    刚刚研究了一下线程池,如果有不足之处,请大家不吝赐教,大家共同学习.共同交流. 在什么情况下使用线程池? 单个任务处理的时间比较短 将需处理的任务的数量大 使用线程池的好处: 减少在创建和销毁线程上所 ...

  9. Java线程池与java.util.concurrent

    Java(Android)线程池 介绍new Thread的弊端及Java四种线程池的使用,对Android同样适用.本文是基础篇,后面会分享下线程池一些高级功能. 1.new Thread的弊端执行 ...

随机推荐

  1. shell小记

    1.以#!/bin/bash 开头2.执行方式 bash sh ./ `script`3.变量: 系统变量  自定义变量  --->export 可导出为全局环境变量        set显示所 ...

  2. python常用模块目录

    博客目录总纲首页 python其他知识目录 random  hashlib  os  sys  json __name__ shutil  xlrd  xlwt   xlutils 核心模块:os s ...

  3. [leetcode-897-Increasing Order Search Tree]

    Given a tree, rearrange the tree in in-order so that the leftmost node in the tree is now the root o ...

  4. js备忘录3

    JavaScript也有类型转换 js中的获取指定位数的方法 +和-的转换方向不同 在JavaScript中首先给变量赋值数字,然后再给变量赋值字符串是合法的 这点和Java有些区别 在函数体内声明变 ...

  5. JS进阶系列之原型、原型链

    最近在看 JavaScript忍者秘籍 这本书的时候,再加上最近遇到的关于原型.原型链的面试题,所以萌生了要把这些知识梳理一遍的想法,所以以下是我自己对原型.原型链的看法 什么是原型 提到原型,我们可 ...

  6. Daily Scrum2 11.4

    昨天的任务大家都已经完成,daily scrum记录的是当日已经完成的任务. 今日任务列表: 杨伊:完成团队作业之软件测评的功能部分 徐钧鸿:CodingCook的model和helper部分 张艺: ...

  7. OO第三阶段作业总结

    调研:        最早的程序设计是直接采用机器语言来编写的,或者使用二进制码来表示机器能够识别和执行的指令和数据.机器语言的优点在于速度快,缺点在于写起来实在是太困难了,编程效率低,可读性差,并且 ...

  8. node下的跨域传递cookie

    研究背景: 最近有一位朋友找工作,需要面试,涉及到面试就涉及面试题,于是我想起来鄙人之前面试被问到的一个跨域传递cookie的问题.搜索了相关资料,但自己不敲一下肯定是不足以让人信服的. 我用node ...

  9. vue 笔记1

    created 钩子可以用来在一个实例被创建之后执行代码: new Vue({ data: { a: 1 }, created: function () { // `this` 指向 vm 实例 co ...

  10. Read N Characters Given Read4 II - Call multiple times

    The API: int read4(char *buf) reads 4 characters at a time from a file. The return value is the actu ...