FTRL算法
稀疏解的作用:内存和时间啊
实际的互联网广告应用需要的是快速地进行model的更新。为了保证快速的更新,训练样本是一条一条地过来的,每来一个样本,model的参数对这个样本进行一次迭代,从而保证了model的及时更新,这种方法叫做OGD(Online gradient descent)。
传统Batch算法优点是精度和收敛还可以,缺点是无法有效处理大数据集(此时全局梯度计算代价太大),且没法应用于数据流做在线学习
SGD存在的问题上面主要列了1)精度低;2)收敛慢;3)几乎得不到稀疏解。其中对online learning最重要的问题是SGD很难得到需要的正则化设计的解,特别是几乎得不到稀疏解
RDA,2010微软提出,特点:相对FOBOS,在精度与稀疏性之间做平衡,其中实验表明,在L1正则下,RDA比FOBOS可以更加有效地得到稀疏解。
FTRL算法的更多相关文章
- 在线学习和在线凸优化(online learning and online convex optimization)—FTRL算法6
- 在线机器学习FTRL(Follow-the-regularized-Leader)算法介绍
看到好文章,坚决转载!哈哈,学术目的~~ 最近几个同事在做推荐平台的项目,都问到怎么实现FTRL算法,要求协助帮忙实现FTRL的算法模块.今天也是有空,赶紧来做个整理.明天还要去上海参加天善智能组织的 ...
- Alink漫谈(十二) :在线学习算法FTRL 之 整体设计
Alink漫谈(十二) :在线学习算法FTRL 之 整体设计 目录 Alink漫谈(十二) :在线学习算法FTRL 之 整体设计 0x00 摘要 0x01概念 1.1 逻辑回归 1.1.1 推导过程 ...
- Alink漫谈(十三) :在线学习算法FTRL 之 具体实现
Alink漫谈(十三) :在线学习算法FTRL 之 具体实现 目录 Alink漫谈(十三) :在线学习算法FTRL 之 具体实现 0x00 摘要 0x01 回顾 0x02 在线训练 2.1 预置模型 ...
- 在线最优化求解(Online Optimization)之五:FTRL
在线最优化求解(Online Optimization)之五:FTRL 在上一篇博文中中我们从原理上定性比较了L1-FOBOS和L1-RDA在稀疏性上的表现.有实验证明,L1-FOBOS这一类基于梯度 ...
- [笔记]FTRL与Online Optimization
1. 背景介绍 最优化求解问题可能是我们在工作中遇到的最多的一类问题了:从已有的数据中提炼出最适合的模型参数,从而对未知的数据进行预测.当我们面对高维高数据量的场景时,常见的批量处理的方式已经显得力不 ...
- FTRL(Follow The Regularized Leader)学习总结
摘要: 1.算法概述 2.算法要点与推导 3.算法特性及优缺点 4.注意事项 5.实现和具体例子 6.适用场合 内容: 1.算法概述 FTRL是一种适用于处理超大规模数据的,含大量稀疏特征的在线学习的 ...
- 在线学习和在线凸优化(online learning and online convex optimization)—FTL算法5
最自然的学习规则是使用任何在过去回合中损失最小的向量. 这与Consistent算法的精神相同,它在在线凸优化中通常被称为Follow-The-Leader,最小化累积损失. 对于任何t: 我们谈到了 ...
- FTRL与Online Optimization
1. 背景介绍 最优化求解问题可能是我们在工作中遇到的最多的一类问题了:从已有的数据中提炼出最适合的模型参数,从而对未知的数据进行预测.当我们面对高维高数据量的场景时,常见的批量处理的方式已经显得力不 ...
随机推荐
- 手动为容器设置ip地址
1.安装bridge-utils # aptitude install -y bridge-utils 2.配置网桥 # vim /etc/network/interfaces auto lo ifa ...
- WEB入门三 CSS样式表基础
学习内容 Ø CSS的基本语法 Ø CSS选择器 Ø 常见的CSS样式 Ø 网页中3种使用CSS的方式 能力目标 Ø 理解CSS的 ...
- Android listview与adapter用法(BaseAdapter + getView)
Android listview与adapter用法http://www.cnblogs.com/zhengbeibei/archive/2013/05/14/3078805.html package ...
- 解题:CQOI 2015 选数
题面 神仙题,不需要反演 首先上下界同时除以$k$,转换成取$n$个$gcd$为$1$的数的方案数,其中上界向下取整,下界向上取整 然后设$f[i]$表示选$n$个互不相同的数$gcd$为$i$的方案 ...
- 解题:POI 2004 String
题面 首先我们要有一个明确的构造思路 对于非根节点,我们把子树连上来的线两两配对,这样如果它有奇数个子树就会剩一个,这时候把这根线传给父亲即可.对于根节点还是两两配对,但是注意如果它也有奇数个子树就不 ...
- Chapter2(变量和基础类型)--C++Prime笔记
数据类型选择的准则: ①当明确知晓数值不可能为负时,选用无符号类型. ②使用int执行整数运算.在实际应用中,short常常显得太小而long一般和int有一样的尺寸.如果运算范围超过int的表示范围 ...
- (四)关于读文件的结束的判别方法(EOF和feof)以及区别
关于读文件的时候判断文本是否读完的方式一般可以通过EOF,一般宏定义为-1.因为ASCII码中不可能出现-1. 当以文本形式读取文件内容, 读入的字符值等于EOF时, 表示读入的已不是正常的字符而是文 ...
- 来自Redis 作者的看法 —— Twemproxy
虽然大量用户使用Redis节点的大型农场,但从项目本身来看,Redis主要是单实例业务. 我有很大的计划与项目一起分发,在某种程度上我不再评估Redis的任何线程版本:对我来说,从Redis的角度看, ...
- Git5:Git操作远程仓库
目录 说明 一.git clone 二.git remote 三.git fetch 四.git pull 五.git push 说明 Git有很多优势,其中之一就是远程操作非常简便.本文详细介绍5个 ...
- ROI align解释
转自:blog.leanote.com/post/afanti.deng@gmail.com/b5f4f526490b ROI Align 是在Mask-RCNN这篇论文里提出的一种区域特征聚集方式, ...