FTRL算法
稀疏解的作用:内存和时间啊
实际的互联网广告应用需要的是快速地进行model的更新。为了保证快速的更新,训练样本是一条一条地过来的,每来一个样本,model的参数对这个样本进行一次迭代,从而保证了model的及时更新,这种方法叫做OGD(Online gradient descent)。
传统Batch算法优点是精度和收敛还可以,缺点是无法有效处理大数据集(此时全局梯度计算代价太大),且没法应用于数据流做在线学习
SGD存在的问题上面主要列了1)精度低;2)收敛慢;3)几乎得不到稀疏解。其中对online learning最重要的问题是SGD很难得到需要的正则化设计的解,特别是几乎得不到稀疏解
RDA,2010微软提出,特点:相对FOBOS,在精度与稀疏性之间做平衡,其中实验表明,在L1正则下,RDA比FOBOS可以更加有效地得到稀疏解。
FTRL算法的更多相关文章
- 在线学习和在线凸优化(online learning and online convex optimization)—FTRL算法6
- 在线机器学习FTRL(Follow-the-regularized-Leader)算法介绍
看到好文章,坚决转载!哈哈,学术目的~~ 最近几个同事在做推荐平台的项目,都问到怎么实现FTRL算法,要求协助帮忙实现FTRL的算法模块.今天也是有空,赶紧来做个整理.明天还要去上海参加天善智能组织的 ...
- Alink漫谈(十二) :在线学习算法FTRL 之 整体设计
Alink漫谈(十二) :在线学习算法FTRL 之 整体设计 目录 Alink漫谈(十二) :在线学习算法FTRL 之 整体设计 0x00 摘要 0x01概念 1.1 逻辑回归 1.1.1 推导过程 ...
- Alink漫谈(十三) :在线学习算法FTRL 之 具体实现
Alink漫谈(十三) :在线学习算法FTRL 之 具体实现 目录 Alink漫谈(十三) :在线学习算法FTRL 之 具体实现 0x00 摘要 0x01 回顾 0x02 在线训练 2.1 预置模型 ...
- 在线最优化求解(Online Optimization)之五:FTRL
在线最优化求解(Online Optimization)之五:FTRL 在上一篇博文中中我们从原理上定性比较了L1-FOBOS和L1-RDA在稀疏性上的表现.有实验证明,L1-FOBOS这一类基于梯度 ...
- [笔记]FTRL与Online Optimization
1. 背景介绍 最优化求解问题可能是我们在工作中遇到的最多的一类问题了:从已有的数据中提炼出最适合的模型参数,从而对未知的数据进行预测.当我们面对高维高数据量的场景时,常见的批量处理的方式已经显得力不 ...
- FTRL(Follow The Regularized Leader)学习总结
摘要: 1.算法概述 2.算法要点与推导 3.算法特性及优缺点 4.注意事项 5.实现和具体例子 6.适用场合 内容: 1.算法概述 FTRL是一种适用于处理超大规模数据的,含大量稀疏特征的在线学习的 ...
- 在线学习和在线凸优化(online learning and online convex optimization)—FTL算法5
最自然的学习规则是使用任何在过去回合中损失最小的向量. 这与Consistent算法的精神相同,它在在线凸优化中通常被称为Follow-The-Leader,最小化累积损失. 对于任何t: 我们谈到了 ...
- FTRL与Online Optimization
1. 背景介绍 最优化求解问题可能是我们在工作中遇到的最多的一类问题了:从已有的数据中提炼出最适合的模型参数,从而对未知的数据进行预测.当我们面对高维高数据量的场景时,常见的批量处理的方式已经显得力不 ...
随机推荐
- 【Learning】积性函数前缀和——洲阁筛(min_25写法)
问题描述 洲阁筛解决的问题主要是\(n\)范围较大的积性函数前缀和. 已知一积性函数\(f(i)\),求\(\sum_{i=1}^nf(i)\). \(n\leq10^{12}\). 求解方法 如 ...
- ActiveMQ反序列化漏洞(CVE-2015-5254)复现
0x00 漏洞前言 Apache ActiveMQ是美国阿帕奇(Apache)软件基金会所研发的一套开源的消息中间件,它支持Java消息服务,集群,Spring Framework等.Apache ...
- npm publish gives “unscoped packages cannot be private”
解决方法: npm publish --access public 详细参考此处
- 洛谷P3994 Highway(树形DP+斜率优化+可持久化线段树/二分)
有点类似NOI2014购票 首先有方程$f(i)=min\{f(j)+(dep_i-dep_j)*p_i+q_i\}$ 这个显然是可以斜率优化的... $\frac {f(j)-f(k)}{dep_j ...
- 我的第一个activiti实例 (代码方式) ctiviti入门列子一个简单的activiti请假流程
转: (activiti入门列子一个简单的activiti请假流程) 我的第一个activiti实例 2017年05月31日 14:29:45 chf_mixueer 阅读数:1223 整个项目的 ...
- Django JSON 时间
在views.py中导入: from django.core.serializers.json import DjangoJSONEncoder 在返回JSON数据时调用: return HttpRe ...
- ribbion的负载均衡之端口的切换
可以说在这里被坑了很久,终于今天在大神的指导下,成功实现了负载均衡,切换不同的端口,这里来记录下,首先来看下效果图吧: 到底是怎么实现的呢?到底是如何切换的呢? 具体来讲: 几个步骤,启动服务注册中心 ...
- linux join命令
http://note.youdao.com/noteshare?id=151c4844cac74e9b08c5dc954a1a4967
- Excel批量删除换行符_clean函数
http://jingyan.baidu.com/article/e2284b2b489b96e2e6118d30.html CLEAN函数,用于删除文本中不能打印的字符.对从其他应用程序中输入的文本 ...
- [Vue warn]: Do not mount Vue to <html> or <body> - mount to normal elements instead.
官方文档是这么解释的: 提供的元素只能作为挂载点.不同于 Vue 1.x,所有的挂载元素会被 Vue 生成的 DOM 替换.因此不推荐挂载root实例到 <html> 或者 <bod ...