稀疏解的作用:内存和时间啊

实际的互联网广告应用需要的是快速地进行model的更新。为了保证快速的更新,训练样本是一条一条地过来的,每来一个样本,model的参数对这个样本进行一次迭代,从而保证了model的及时更新,这种方法叫做OGD(Online gradient descent)。

传统Batch算法优点是精度和收敛还可以,缺点是无法有效处理大数据集(此时全局梯度计算代价太大),且没法应用于数据流做在线学习

SGD存在的问题上面主要列了1)精度低;2)收敛慢;3)几乎得不到稀疏解。其中对online learning最重要的问题是SGD很难得到需要的正则化设计的解,特别是几乎得不到稀疏解

RDA,2010微软提出,特点:相对FOBOS,在精度与稀疏性之间做平衡,其中实验表明,在L1正则下,RDA比FOBOS可以更加有效地得到稀疏解。

FTRL算法的更多相关文章

  1. 在线学习和在线凸优化(online learning and online convex optimization)—FTRL算法6

  2. 在线机器学习FTRL(Follow-the-regularized-Leader)算法介绍

    看到好文章,坚决转载!哈哈,学术目的~~ 最近几个同事在做推荐平台的项目,都问到怎么实现FTRL算法,要求协助帮忙实现FTRL的算法模块.今天也是有空,赶紧来做个整理.明天还要去上海参加天善智能组织的 ...

  3. Alink漫谈(十二) :在线学习算法FTRL 之 整体设计

    Alink漫谈(十二) :在线学习算法FTRL 之 整体设计 目录 Alink漫谈(十二) :在线学习算法FTRL 之 整体设计 0x00 摘要 0x01概念 1.1 逻辑回归 1.1.1 推导过程 ...

  4. Alink漫谈(十三) :在线学习算法FTRL 之 具体实现

    Alink漫谈(十三) :在线学习算法FTRL 之 具体实现 目录 Alink漫谈(十三) :在线学习算法FTRL 之 具体实现 0x00 摘要 0x01 回顾 0x02 在线训练 2.1 预置模型 ...

  5. 在线最优化求解(Online Optimization)之五:FTRL

    在线最优化求解(Online Optimization)之五:FTRL 在上一篇博文中中我们从原理上定性比较了L1-FOBOS和L1-RDA在稀疏性上的表现.有实验证明,L1-FOBOS这一类基于梯度 ...

  6. [笔记]FTRL与Online Optimization

    1. 背景介绍 最优化求解问题可能是我们在工作中遇到的最多的一类问题了:从已有的数据中提炼出最适合的模型参数,从而对未知的数据进行预测.当我们面对高维高数据量的场景时,常见的批量处理的方式已经显得力不 ...

  7. FTRL(Follow The Regularized Leader)学习总结

    摘要: 1.算法概述 2.算法要点与推导 3.算法特性及优缺点 4.注意事项 5.实现和具体例子 6.适用场合 内容: 1.算法概述 FTRL是一种适用于处理超大规模数据的,含大量稀疏特征的在线学习的 ...

  8. 在线学习和在线凸优化(online learning and online convex optimization)—FTL算法5

    最自然的学习规则是使用任何在过去回合中损失最小的向量. 这与Consistent算法的精神相同,它在在线凸优化中通常被称为Follow-The-Leader,最小化累积损失. 对于任何t: 我们谈到了 ...

  9. FTRL与Online Optimization

    1. 背景介绍 最优化求解问题可能是我们在工作中遇到的最多的一类问题了:从已有的数据中提炼出最适合的模型参数,从而对未知的数据进行预测.当我们面对高维高数据量的场景时,常见的批量处理的方式已经显得力不 ...

随机推荐

  1. 【Learning】积性函数前缀和——洲阁筛(min_25写法)

    问题描述 洲阁筛解决的问题主要是\(n\)范围较大的积性函数前缀和. ​ 已知一积性函数\(f(i)\),求\(\sum_{i=1}^nf(i)\). \(n\leq10^{12}\). 求解方法 如 ...

  2. ActiveMQ反序列化漏洞(CVE-2015-5254)复现

      0x00 漏洞前言 Apache ActiveMQ是美国阿帕奇(Apache)软件基金会所研发的一套开源的消息中间件,它支持Java消息服务,集群,Spring Framework等.Apache ...

  3. npm publish gives “unscoped packages cannot be private”

    解决方法: npm publish --access public 详细参考此处

  4. 洛谷P3994 Highway(树形DP+斜率优化+可持久化线段树/二分)

    有点类似NOI2014购票 首先有方程$f(i)=min\{f(j)+(dep_i-dep_j)*p_i+q_i\}$ 这个显然是可以斜率优化的... $\frac {f(j)-f(k)}{dep_j ...

  5. 我的第一个activiti实例 (代码方式) ctiviti入门列子一个简单的activiti请假流程

    转: (activiti入门列子一个简单的activiti请假流程) 我的第一个activiti实例 2017年05月31日 14:29:45 chf_mixueer 阅读数:1223   整个项目的 ...

  6. Django JSON 时间

    在views.py中导入: from django.core.serializers.json import DjangoJSONEncoder 在返回JSON数据时调用: return HttpRe ...

  7. ribbion的负载均衡之端口的切换

    可以说在这里被坑了很久,终于今天在大神的指导下,成功实现了负载均衡,切换不同的端口,这里来记录下,首先来看下效果图吧: 到底是怎么实现的呢?到底是如何切换的呢? 具体来讲: 几个步骤,启动服务注册中心 ...

  8. linux join命令

    http://note.youdao.com/noteshare?id=151c4844cac74e9b08c5dc954a1a4967

  9. Excel批量删除换行符_clean函数

    http://jingyan.baidu.com/article/e2284b2b489b96e2e6118d30.html CLEAN函数,用于删除文本中不能打印的字符.对从其他应用程序中输入的文本 ...

  10. [Vue warn]: Do not mount Vue to <html> or <body> - mount to normal elements instead.

    官方文档是这么解释的: 提供的元素只能作为挂载点.不同于 Vue 1.x,所有的挂载元素会被 Vue 生成的 DOM 替换.因此不推荐挂载root实例到 <html> 或者 <bod ...