Description

You are going to the beach with the idea to build the greatest sand castle ever in your head! The beach is not as three-dimensional as you could have imagined, it can be described as a line of spots to pile up sand pillars. Spots are numbered 1 through infinity from left to right.

Obviously, there is not enough sand on the beach, so you brought \(n\) packs of sand with you. Let height \(h_i\) of the sand pillar on some spot \(i\) be the number of sand packs you spent on it. You can't split a sand pack to multiple pillars, all the sand from it should go to a single one. There is a fence of height equal to the height of pillar with \(H\) sand packs to the left of the first spot and you should prevent sand from going over it.

Finally you ended up with the following conditions to building the castle:

  • \(h_1 \le H\) : no sand from the leftmost spot should go over the fence;
  • For any \(i \in \left[1, \infty\right)\), \(|h_i - h_{i + 1}| ≤ 1\): large difference in heights of two neighboring pillars can lead sand to fall down from the higher one to the lower, you really don't want this to happen;
  • \(\sum_{i=1}^{\infty}h_{i} = n\): you want to spend all the sand you brought with you.

As you have infinite spots to build, it is always possible to come up with some valid castle structure. Though you want the castle to be as compact as possible.

Your task is to calculate the minimum number of spots you can occupy so that all the aforementioned conditions hold.

Input

The only line contains two integer numbers \(n\) and \(H\) (\(1 \le n, H \le 10^{18}\)) — the number of sand packs you have and the height of the fence, respectively.

Output

Print the minimum number of spots you can occupy so the all the castle building conditions hold.

Examples

input

5 2

output

3

input

6 8

output

3

Note

Here are the heights of some valid castles:

  • n = 5, H = 2, [2, 2, 1, 0, ...], [2, 1, 1, 1, 0, ...], [1, 0, 1, 2, 1, 0, ...]
  • n = 6, H = 8, [3, 2, 1, 0, ...], [2, 2, 1, 1, 0, ...], [0, 1, 0, 1, 2, 1, 1, 0...] (this one has 5 spots occupied)

The first list for both cases is the optimal answer, 3 spots are occupied in them.

And here are some invalid ones:

  • n = 5, H = 2, [3, 2, 0, ...], [2, 3, 0, ...], [1, 0, 2, 2, ...]
  • n = 6, H = 8, [2, 2, 2, 0, ...], [6, 0, ...], [1, 4, 1, 0...], [2, 2, 1, 0, ...]

Solution

根据样例理解一下题意,就是给定\(n\)和\(H\),要找到一个无限长的序列\(h_{1}, h_{2}, h_{3}, \dots\),满足:

  • \(h_{1} \le H\)
  • \(\forall i \ge 0, \left|h_{i} - h_{i+1}\right| \le 1\)
  • 存在一个\(N\),当\(i \ge N\)时,\(h_i = 0\)

我们的任务是找到一个满足上述三个条件的序列,使得序列中的非零元素最少。

最优的答案或者是一个从某个值递减到1的序列,或者是一个先从H​递增,再递减到1的序列,分情况处理。

对于第一种情况,通过二分找到一个递减的初始值,具体来讲,就是找到最大的满足\(\sum_{i=1}^{h}i \le n\)的\(h\),如果\(n = \sum_{i=1}^{h}i\),则答案为\(h\),否则答案为\(h + 1\)。

对于第二种情况,我是这样考虑的,首先序列的尾部是\(H-1, H-2, \dots, 1, 0, 0, \dots\),然后在序列的头部插入\(2 \times H, 2 \times (H + 1), 2 \times (H + 2), \dots\),我们可以通过二分找到一个最大的满足\(\sum_{i=1}^{H-1}i + 2\sum_{i=0}^{h}(H+i) \le n\)的\(h\),再简单讨论一下。

大致的思路是这样的,具体如何二分因人而异,这道题的数据范围比较大,所以判断条件要写得小心一些,避免爆long long。

#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
int main() {
ll n, h;
scanf("%I64d%I64d", &n, &h);
if ((n * 2 + h) / (h + 1) <= h) {
ll l = 1, r = h;
while (l < r) {
ll mid = (l + r + 1) / 2;
if (2 * n / mid >= mid + 1) l = mid;
else r = mid - 1;
}
printf("%I64d\n", l + ((2 * n + l - 1) / l > l + 1));
} else {
if (n <= h * (h + 1) / 2 + h) {
printf("%I64d\n", h + 1);
return 0;
}
n -= (h - 1) * h / 2;
ll l = 0, r = (ll)sqrt(n) + 1;
while (l < r) {
ll mid = (l + r + 1) / 2;
if ((n + mid) / (mid + 1) > (2 * h + mid)) l = mid;
else r = mid - 1;
}
ll ans = h - 1 + 2 * (l + 1);
n -= (l + 1) * (2 * h + l);
assert(n >= 1 && n <= 2 * (h + l + 1));
if (n <= h + l + 1) ans += 1;
else ans += 2;
printf("%I64d\n", ans);
}
return 0;
}

CodeForces 985D Sand Fortress的更多相关文章

  1. Codeforces 985 D - Sand Fortress

    D - Sand Fortress 思路: 二分 有以下两种构造, 分别二分取个最小. 代码: #include<bits/stdc++.h> using namespace std; # ...

  2. codeforces 985 D. Sand Fortress(二分+思维)

    Sand Fortress time limit per test 2 seconds memory limit per test 256 megabytes input standard input ...

  3. CF985D Sand Fortress

    思路: 很奇怪的结论题,不好想.参考了http://codeforces.com/blog/entry/59623 实现: #include <bits/stdc++.h> using n ...

  4. Codeforces 985D

    题意略. 思路:这个题本来打算先推一下公式,然后解方程来算.函数图像大概如下: 最左端为H.但是由于中间那个尖的地方(假设它的高度为h),可能在那个地方有多堆沙包,所以推公式貌似不行. 但是最高高度h ...

  5. Educational Codeforces Round 44 (Rated for Div. 2)

    题目链接:https://codeforces.com/contest/985 ’A.Chess Placing 题意:给了一维的一个棋盘,共有n(n必为偶数)个格子.棋盘上是黑白相间的.现在棋盘上有 ...

  6. Codeforces 985 最短水桶分配 沙堆构造 贪心单调对列

    A B /* Huyyt */ #include <bits/stdc++.h> #define mem(a,b) memset(a,b,sizeof(a)) #define mkp(a, ...

  7. Educational Codeforces Round 44#985DSand Fortress+二分

    传送门:送你去985D: 题意: 你有n袋沙包,在第一个沙包高度不超过H的条件下,满足相邻两个沙包高度差小于等于1的条件下(注意最小一定可以为0),求最少的沙包堆数: 思路: 画成图来说,有两种可能, ...

  8. Codeforces Round #355 (Div. 2)-C

    C. Vanya and Label 题目链接:http://codeforces.com/contest/677/problem/C While walking down the street Va ...

  9. Codeforces 599C Day at the Beach(想法题,排序)

    C. Day at the Beach One day Squidward, Spongebob and Patrick decided to go to the beach. Unfortunate ...

随机推荐

  1. 理解和配置Out of memory: Kill process

    转自:爱开源 理解 OOM killer 最近有位 VPS 客户抱怨 MySQL 无缘无故挂掉,还有位客户抱怨 VPS 经常死机,登陆到终端看了一下,都是常见的 Out of memory 问题.这通 ...

  2. __iter__的有无

    迭代器和生成器 1.迭代器 我们之前⼀直在⽤可迭代对象进⾏迭代操作. 那么到底什么是可迭代对象.⾸先我们先回顾⼀下⽬前我们所熟知的可迭代对象有哪些: str, list, tuple, dict, s ...

  3. Php发送post请求方法

    因为自己时常用到 所以还是发布一下吧 /** * 发送post请求 * @param string $url 请求地址 * @param array $post_data post键值对数据 * @r ...

  4. JQuery $.axaj的基本格式

    总是忘了,保存以备后用. $.ajax({ url: '', //请求的url地址 dataType: "json", //返回的格式为json async: true, //请求 ...

  5. IKVM.NET入门(1)

    IKVM.NET是一个针对Mono和微软.net框架的java实现,其设计目的是在.NET平台上运行java程序.本文将比较详细的介绍这个工具的原理.使用入门(如何java应用转换为.NET应用.如何 ...

  6. Jenkins 配合 GitLab 实现分支的自动合并、自动创建 Tag

    Jenkins 配合 GitLab 实现分支的自动合并.自动创建 Tag 背景 GitFlow工作流简介 Gitflow工作流定义了一个围绕项目发布的严格分支模型,它会相对复杂一点,但提供了用于一个健 ...

  7. Cent OS home下中文目录改成英文目录

    如果安装了中文版的Cent OS之后,root目录和home目录下会出现中文的路径名,如“桌面”.“文档”.“图片”.“公共的”.“下载”.“音乐”.“视频”等目录,这样在命令行上操作十分的不方便,需 ...

  8. 基于easyui开发Web版Activiti流程定制器详解(四)——页面结构(下)

    题外话: 这两天周末在家陪老婆和儿子没上来更新请大家见谅!上一篇介绍了调色板和画布区的页面结构,这篇讲解一下属性区的结构也是定制器最重要的一个页面. 属性区整体页面结构如图:  在这个区域可以定义工作 ...

  9. 我做的一个websocket的demo(php server)

    notice: 通过命令行执行php文件  如 php -q c:\path\server.php 通过本地web服务器访问 http://127.0.0.1/websocket/index.php即 ...

  10. React 入门学习笔记2

    摘自阮一峰:React入门实例教程,转载请注明出处. 一.获取真实的DOM节点 组件并不是真实的 DOM 节点,而是存在于内存之中的一种数据结构,叫做虚拟 DOM (virtual DOM).只有当它 ...