Description

You are going to the beach with the idea to build the greatest sand castle ever in your head! The beach is not as three-dimensional as you could have imagined, it can be described as a line of spots to pile up sand pillars. Spots are numbered 1 through infinity from left to right.

Obviously, there is not enough sand on the beach, so you brought \(n\) packs of sand with you. Let height \(h_i\) of the sand pillar on some spot \(i\) be the number of sand packs you spent on it. You can't split a sand pack to multiple pillars, all the sand from it should go to a single one. There is a fence of height equal to the height of pillar with \(H\) sand packs to the left of the first spot and you should prevent sand from going over it.

Finally you ended up with the following conditions to building the castle:

  • \(h_1 \le H\) : no sand from the leftmost spot should go over the fence;
  • For any \(i \in \left[1, \infty\right)\), \(|h_i - h_{i + 1}| ≤ 1\): large difference in heights of two neighboring pillars can lead sand to fall down from the higher one to the lower, you really don't want this to happen;
  • \(\sum_{i=1}^{\infty}h_{i} = n\): you want to spend all the sand you brought with you.

As you have infinite spots to build, it is always possible to come up with some valid castle structure. Though you want the castle to be as compact as possible.

Your task is to calculate the minimum number of spots you can occupy so that all the aforementioned conditions hold.

Input

The only line contains two integer numbers \(n\) and \(H\) (\(1 \le n, H \le 10^{18}\)) — the number of sand packs you have and the height of the fence, respectively.

Output

Print the minimum number of spots you can occupy so the all the castle building conditions hold.

Examples

input

5 2

output

3

input

6 8

output

3

Note

Here are the heights of some valid castles:

  • n = 5, H = 2, [2, 2, 1, 0, ...], [2, 1, 1, 1, 0, ...], [1, 0, 1, 2, 1, 0, ...]
  • n = 6, H = 8, [3, 2, 1, 0, ...], [2, 2, 1, 1, 0, ...], [0, 1, 0, 1, 2, 1, 1, 0...] (this one has 5 spots occupied)

The first list for both cases is the optimal answer, 3 spots are occupied in them.

And here are some invalid ones:

  • n = 5, H = 2, [3, 2, 0, ...], [2, 3, 0, ...], [1, 0, 2, 2, ...]
  • n = 6, H = 8, [2, 2, 2, 0, ...], [6, 0, ...], [1, 4, 1, 0...], [2, 2, 1, 0, ...]

Solution

根据样例理解一下题意,就是给定\(n\)和\(H\),要找到一个无限长的序列\(h_{1}, h_{2}, h_{3}, \dots\),满足:

  • \(h_{1} \le H\)
  • \(\forall i \ge 0, \left|h_{i} - h_{i+1}\right| \le 1\)
  • 存在一个\(N\),当\(i \ge N\)时,\(h_i = 0\)

我们的任务是找到一个满足上述三个条件的序列,使得序列中的非零元素最少。

最优的答案或者是一个从某个值递减到1的序列,或者是一个先从H​递增,再递减到1的序列,分情况处理。

对于第一种情况,通过二分找到一个递减的初始值,具体来讲,就是找到最大的满足\(\sum_{i=1}^{h}i \le n\)的\(h\),如果\(n = \sum_{i=1}^{h}i\),则答案为\(h\),否则答案为\(h + 1\)。

对于第二种情况,我是这样考虑的,首先序列的尾部是\(H-1, H-2, \dots, 1, 0, 0, \dots\),然后在序列的头部插入\(2 \times H, 2 \times (H + 1), 2 \times (H + 2), \dots\),我们可以通过二分找到一个最大的满足\(\sum_{i=1}^{H-1}i + 2\sum_{i=0}^{h}(H+i) \le n\)的\(h\),再简单讨论一下。

大致的思路是这样的,具体如何二分因人而异,这道题的数据范围比较大,所以判断条件要写得小心一些,避免爆long long。

#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
int main() {
ll n, h;
scanf("%I64d%I64d", &n, &h);
if ((n * 2 + h) / (h + 1) <= h) {
ll l = 1, r = h;
while (l < r) {
ll mid = (l + r + 1) / 2;
if (2 * n / mid >= mid + 1) l = mid;
else r = mid - 1;
}
printf("%I64d\n", l + ((2 * n + l - 1) / l > l + 1));
} else {
if (n <= h * (h + 1) / 2 + h) {
printf("%I64d\n", h + 1);
return 0;
}
n -= (h - 1) * h / 2;
ll l = 0, r = (ll)sqrt(n) + 1;
while (l < r) {
ll mid = (l + r + 1) / 2;
if ((n + mid) / (mid + 1) > (2 * h + mid)) l = mid;
else r = mid - 1;
}
ll ans = h - 1 + 2 * (l + 1);
n -= (l + 1) * (2 * h + l);
assert(n >= 1 && n <= 2 * (h + l + 1));
if (n <= h + l + 1) ans += 1;
else ans += 2;
printf("%I64d\n", ans);
}
return 0;
}

CodeForces 985D Sand Fortress的更多相关文章

  1. Codeforces 985 D - Sand Fortress

    D - Sand Fortress 思路: 二分 有以下两种构造, 分别二分取个最小. 代码: #include<bits/stdc++.h> using namespace std; # ...

  2. codeforces 985 D. Sand Fortress(二分+思维)

    Sand Fortress time limit per test 2 seconds memory limit per test 256 megabytes input standard input ...

  3. CF985D Sand Fortress

    思路: 很奇怪的结论题,不好想.参考了http://codeforces.com/blog/entry/59623 实现: #include <bits/stdc++.h> using n ...

  4. Codeforces 985D

    题意略. 思路:这个题本来打算先推一下公式,然后解方程来算.函数图像大概如下: 最左端为H.但是由于中间那个尖的地方(假设它的高度为h),可能在那个地方有多堆沙包,所以推公式貌似不行. 但是最高高度h ...

  5. Educational Codeforces Round 44 (Rated for Div. 2)

    题目链接:https://codeforces.com/contest/985 ’A.Chess Placing 题意:给了一维的一个棋盘,共有n(n必为偶数)个格子.棋盘上是黑白相间的.现在棋盘上有 ...

  6. Codeforces 985 最短水桶分配 沙堆构造 贪心单调对列

    A B /* Huyyt */ #include <bits/stdc++.h> #define mem(a,b) memset(a,b,sizeof(a)) #define mkp(a, ...

  7. Educational Codeforces Round 44#985DSand Fortress+二分

    传送门:送你去985D: 题意: 你有n袋沙包,在第一个沙包高度不超过H的条件下,满足相邻两个沙包高度差小于等于1的条件下(注意最小一定可以为0),求最少的沙包堆数: 思路: 画成图来说,有两种可能, ...

  8. Codeforces Round #355 (Div. 2)-C

    C. Vanya and Label 题目链接:http://codeforces.com/contest/677/problem/C While walking down the street Va ...

  9. Codeforces 599C Day at the Beach(想法题,排序)

    C. Day at the Beach One day Squidward, Spongebob and Patrick decided to go to the beach. Unfortunate ...

随机推荐

  1. NSOperation的使用细节 [3]

    NSOperation的使用细节 [3] 这一节我们来写自定义concurrent的operation,自定义concurrent的operation稍微有点复杂,需要按照某些既定的步骤编写才可以完成 ...

  2. Oracle数据库突然宕机,处理方案

    一.现象 数据库突然断掉,无法响应,. 二.分析 查看日志发现错误如下(日志路径:D:\app\Administrator\diag\rdbms\orcl\orcl\trace\alert_hrpde ...

  3. JVM源码分析之堆外内存完全解读

    JVM源码分析之堆外内存完全解读   寒泉子 2016-01-15 17:26:16 浏览6837 评论0 阿里技术协会 摘要: 概述 广义的堆外内存 说到堆外内存,那大家肯定想到堆内内存,这也是我们 ...

  4. Css中路径data用法

    Data URI scheme是在RFC2397中定义的,目的是将一些小的数据,直接嵌入到网页中,从而不用再从外部文件载入. data:,文本数据 data:text/plain,文本数据 data: ...

  5. 浅谈MyBatis缓存

    在谈论MyBatis的缓存之前,我们先说说它的延迟加载,所谓延迟加载, resultMap中的association和collection标签具有延迟加载的功能.延迟加载的意思是说,在关联查询时,利用 ...

  6. Java8系列之重新认识HashMap(转)

    原文出处: 前利 简介 Java为数据结构中的映射定义了一个接口java.util.Map,此接口主要有四个常用的实现类,分别是HashMap.Hashtable.LinkedHashMap和Tree ...

  7. wk_10.md

    Python检测和处理异常 try-except语句 try-except语句定义了进行异常监控的一段代码,并且提供了异常处理的机制,下面是使用的语法: try: # 可能抛出异常的语句,会一直执行, ...

  8. Spring Boot Mock单元测试学习总结

    单元测试的方法有很多种,比如使用Postman.SoapUI等工具测试,当然,这里的测试,主要使用的是基于RESTful风格的SpringMVC的测试,我们可以测试完整的Spring MVC流程,即从 ...

  9. linux 安装git环境变量配置

    cd /usr/local mkdir git 源码安装 cd git yum install curl-devel expat-devel gettext-devel openssl-devel z ...

  10. 内存,缓存,cpu,硬盘关系

    RAM(random access memory)即随机存储内存,这种存储器在断电时将丢失其存储内容,故主要用于存储短时间使用的程序.我把它叫耗电存储器 ROM(Read-Only Memory)即只 ...