Description

You are going to the beach with the idea to build the greatest sand castle ever in your head! The beach is not as three-dimensional as you could have imagined, it can be described as a line of spots to pile up sand pillars. Spots are numbered 1 through infinity from left to right.

Obviously, there is not enough sand on the beach, so you brought \(n\) packs of sand with you. Let height \(h_i\) of the sand pillar on some spot \(i\) be the number of sand packs you spent on it. You can't split a sand pack to multiple pillars, all the sand from it should go to a single one. There is a fence of height equal to the height of pillar with \(H\) sand packs to the left of the first spot and you should prevent sand from going over it.

Finally you ended up with the following conditions to building the castle:

  • \(h_1 \le H\) : no sand from the leftmost spot should go over the fence;
  • For any \(i \in \left[1, \infty\right)\), \(|h_i - h_{i + 1}| ≤ 1\): large difference in heights of two neighboring pillars can lead sand to fall down from the higher one to the lower, you really don't want this to happen;
  • \(\sum_{i=1}^{\infty}h_{i} = n\): you want to spend all the sand you brought with you.

As you have infinite spots to build, it is always possible to come up with some valid castle structure. Though you want the castle to be as compact as possible.

Your task is to calculate the minimum number of spots you can occupy so that all the aforementioned conditions hold.

Input

The only line contains two integer numbers \(n\) and \(H\) (\(1 \le n, H \le 10^{18}\)) — the number of sand packs you have and the height of the fence, respectively.

Output

Print the minimum number of spots you can occupy so the all the castle building conditions hold.

Examples

input

5 2

output

3

input

6 8

output

3

Note

Here are the heights of some valid castles:

  • n = 5, H = 2, [2, 2, 1, 0, ...], [2, 1, 1, 1, 0, ...], [1, 0, 1, 2, 1, 0, ...]
  • n = 6, H = 8, [3, 2, 1, 0, ...], [2, 2, 1, 1, 0, ...], [0, 1, 0, 1, 2, 1, 1, 0...] (this one has 5 spots occupied)

The first list for both cases is the optimal answer, 3 spots are occupied in them.

And here are some invalid ones:

  • n = 5, H = 2, [3, 2, 0, ...], [2, 3, 0, ...], [1, 0, 2, 2, ...]
  • n = 6, H = 8, [2, 2, 2, 0, ...], [6, 0, ...], [1, 4, 1, 0...], [2, 2, 1, 0, ...]

Solution

根据样例理解一下题意,就是给定\(n\)和\(H\),要找到一个无限长的序列\(h_{1}, h_{2}, h_{3}, \dots\),满足:

  • \(h_{1} \le H\)
  • \(\forall i \ge 0, \left|h_{i} - h_{i+1}\right| \le 1\)
  • 存在一个\(N\),当\(i \ge N\)时,\(h_i = 0\)

我们的任务是找到一个满足上述三个条件的序列,使得序列中的非零元素最少。

最优的答案或者是一个从某个值递减到1的序列,或者是一个先从H​递增,再递减到1的序列,分情况处理。

对于第一种情况,通过二分找到一个递减的初始值,具体来讲,就是找到最大的满足\(\sum_{i=1}^{h}i \le n\)的\(h\),如果\(n = \sum_{i=1}^{h}i\),则答案为\(h\),否则答案为\(h + 1\)。

对于第二种情况,我是这样考虑的,首先序列的尾部是\(H-1, H-2, \dots, 1, 0, 0, \dots\),然后在序列的头部插入\(2 \times H, 2 \times (H + 1), 2 \times (H + 2), \dots\),我们可以通过二分找到一个最大的满足\(\sum_{i=1}^{H-1}i + 2\sum_{i=0}^{h}(H+i) \le n\)的\(h\),再简单讨论一下。

大致的思路是这样的,具体如何二分因人而异,这道题的数据范围比较大,所以判断条件要写得小心一些,避免爆long long。

#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
int main() {
ll n, h;
scanf("%I64d%I64d", &n, &h);
if ((n * 2 + h) / (h + 1) <= h) {
ll l = 1, r = h;
while (l < r) {
ll mid = (l + r + 1) / 2;
if (2 * n / mid >= mid + 1) l = mid;
else r = mid - 1;
}
printf("%I64d\n", l + ((2 * n + l - 1) / l > l + 1));
} else {
if (n <= h * (h + 1) / 2 + h) {
printf("%I64d\n", h + 1);
return 0;
}
n -= (h - 1) * h / 2;
ll l = 0, r = (ll)sqrt(n) + 1;
while (l < r) {
ll mid = (l + r + 1) / 2;
if ((n + mid) / (mid + 1) > (2 * h + mid)) l = mid;
else r = mid - 1;
}
ll ans = h - 1 + 2 * (l + 1);
n -= (l + 1) * (2 * h + l);
assert(n >= 1 && n <= 2 * (h + l + 1));
if (n <= h + l + 1) ans += 1;
else ans += 2;
printf("%I64d\n", ans);
}
return 0;
}

CodeForces 985D Sand Fortress的更多相关文章

  1. Codeforces 985 D - Sand Fortress

    D - Sand Fortress 思路: 二分 有以下两种构造, 分别二分取个最小. 代码: #include<bits/stdc++.h> using namespace std; # ...

  2. codeforces 985 D. Sand Fortress(二分+思维)

    Sand Fortress time limit per test 2 seconds memory limit per test 256 megabytes input standard input ...

  3. CF985D Sand Fortress

    思路: 很奇怪的结论题,不好想.参考了http://codeforces.com/blog/entry/59623 实现: #include <bits/stdc++.h> using n ...

  4. Codeforces 985D

    题意略. 思路:这个题本来打算先推一下公式,然后解方程来算.函数图像大概如下: 最左端为H.但是由于中间那个尖的地方(假设它的高度为h),可能在那个地方有多堆沙包,所以推公式貌似不行. 但是最高高度h ...

  5. Educational Codeforces Round 44 (Rated for Div. 2)

    题目链接:https://codeforces.com/contest/985 ’A.Chess Placing 题意:给了一维的一个棋盘,共有n(n必为偶数)个格子.棋盘上是黑白相间的.现在棋盘上有 ...

  6. Codeforces 985 最短水桶分配 沙堆构造 贪心单调对列

    A B /* Huyyt */ #include <bits/stdc++.h> #define mem(a,b) memset(a,b,sizeof(a)) #define mkp(a, ...

  7. Educational Codeforces Round 44#985DSand Fortress+二分

    传送门:送你去985D: 题意: 你有n袋沙包,在第一个沙包高度不超过H的条件下,满足相邻两个沙包高度差小于等于1的条件下(注意最小一定可以为0),求最少的沙包堆数: 思路: 画成图来说,有两种可能, ...

  8. Codeforces Round #355 (Div. 2)-C

    C. Vanya and Label 题目链接:http://codeforces.com/contest/677/problem/C While walking down the street Va ...

  9. Codeforces 599C Day at the Beach(想法题,排序)

    C. Day at the Beach One day Squidward, Spongebob and Patrick decided to go to the beach. Unfortunate ...

随机推荐

  1. form插件ajaxForm和ajaxSubmit方法传递对象参数说明

    form插件的ajaxForm和ajaxSubmit方法的Options对象还可以用来将值传递给jQuery的$.ajax方法.如果你熟悉$.ajax所支持的options,你可以利用它们来将Opti ...

  2. [翻译] M13ProgressSuite

    M13ProgressSuite https://github.com/Marxon13/M13ProgressSuite A set of classes used to display progr ...

  3. Win7系统安装 Photoshop CC 中文完全破解版

    Win7系统安装 Photoshop CC 中文完全破解版 谨以此教程献给某位做UI设计的朋友^_^! 01. 确定自己的系统是32位的还是64位的,本人电脑是64位 02. 将 Photoshop_ ...

  4. Linux 系统学习梳理_【All】

    第一部分---基础学习 00.Linux操作系统各版本ISO镜像下载 00.Linux系统下安装Vmware(虚拟机) 00.Linux 系统安装[Redhat] 00.Linux 系统安装[Cent ...

  5. (z转)基于CPU的Bank BRDF经验模型,实现各向异性光照效果!

    摘抄“GPU Programming And Cg Language Primer 1rd Edition” 中文 名“GPU编程与CG语言之阳春白雪下里巴人” BRDF 光照模型 10.2.1 什么 ...

  6. php 导出

    //导出 //放在model层的类 <?phpnamespace frontend\models; use yii\base\model; /** * @copyright (c) 2014 a ...

  7. VMware下 CentOS 连接外网问题(笔记)

    虚拟机连接外网有三种模式.桥接.Nat.Host-Only.三者的区别,详见 实例讲解虚拟机3种网络模式(桥接.nat.Host-only) 使用虚拟机连接外网时,一定要充分考虑本地的网络环境!!! ...

  8. Array.prototype.reduce 的理解与实现

    Array.prototype.reduce 是 JavaScript 中比较实用的一个函数,但是很多人都没有使用过它,因为 reduce 能做的事情其实 forEach 或者 map 函数也能做,而 ...

  9. 多线程之CountDownLatch、CyclicBarrier和Semaphore

    Java并发编程:CountDownLatch.CyclicBarrier和Semaphore 在java 1.5中,提供了一些非常有用的辅助类来帮助我们进行并发编程,比如CountDownLatch ...

  10. 译:ORCFILE IN HDP 2:更好的压缩,更高的性能

    原文地址: https://hortonworks.com/blog/orcfile-in-hdp-2-better-compression-better-performance/ ORCFILE I ...