题意

给你一个 \(n\) 个点 \(m\) 条边的 \(\rm DAG\) ,询问最多能够删除多少条边,使得图的连通性不变

  • \(n\leq 3\times 10^4\ ,m\leq 10^5\) 。

分析

  • 假设有点 \(u,v,x\) ,且有边 \(u \rightarrow v,\ u \rightarrow x,\ x \rightarrow v\),那么此时 \(u \rightarrow v\) 这条边可以被删除。

  • 于是直接拓扑排序,利用 \(bitset\) 求出每个点可以到达的点集合可以被到达的点集。

  • 对于每个点再搞一个 \(bitset\) 表示这个点连了边的集合。

  • 如果一个点 \(v\) 可以被删除,那么显然\(u\) 可以从它连向的其他点走到 \(v\)。

    因为无环所以不存在双向依赖的关系,也就是说一条边能不能删并不被其他边是否能删所影响。

  • 总时间复杂度为 \(O(m*\frac{n}{32})\)。

代码

#include<bits/stdc++.h>
using namespace std;
#define go(u) for(int i=head[u],v=e[i].to;i;i=e[i].last,v=e[i].to)
#define rep(i,a,b) for(int i=a;i<=b;++i)
#define pb push_back
#define re(x) memset(x,0,sizeof x)
typedef long long LL;
inline int gi(){
int x=0,f=1;char ch=getchar();
while(!isdigit(ch)) {if(ch=='-') f=-1;ch=getchar();}
while(isdigit(ch)){x=(x<<3)+(x<<1)+ch-48;ch=getchar();}
return x*f;
}
template<typename T>inline bool Max(T &a,T b){return a<b?a=b,1:0;}
template<typename T>inline bool Min(T &a,T b){return b<a?a=b,1:0;}
const int N=1e5 + 7;
int n,m,edc=1,ans;
int head[N],ind[N];
bitset<30004>to[30004],bto[30004],tmp;
struct edge{
int last,to;
edge(){}edge(int last,int to):last(last),to(to){}
}e[N*2];
void Add(int a,int b){
e[++edc]=edge(head[a],b),head[a]=edc;
e[++edc]=edge(head[b],a),head[b]=edc;
}
int q[N],hd=1,tl;
void topo(){
rep(i,1,n) if(!ind[i]) q[++tl]=i;
for(;hd<=tl;++hd){
int u=q[hd];
go(u)if(!(i&1))
if(--ind[v]==0) q[++tl]=v;
}
for(int j=tl;j;--j){
int u=q[j];to[u][u]=1;
go(u)if(i&1) to[v]|=to[u];
}
for(int j=1;j<=tl;++j){
int u=q[j];bto[u][u]=1;
go(u)if(!(i&1)) bto[v]|=bto[u];
}
}
int main(){
n=gi(),m=gi();
rep(i,1,m){
int a=gi(),b=gi();
Add(a,b);++ind[b];
}
topo();
for(int u=1;u<=n;++u){
tmp.reset();
go(u)if(!(i&1)) tmp[v]=1;
go(u)if(!(i&1)&&(tmp&bto[v]).count()>1) ++ans;
}
printf("%d\n",ans);
return 0;
}

[BZOJ4484][JSOI2015]最小表示[拓扑排序+bitset]的更多相关文章

  1. BZOJ4484: [Jsoi2015]最小表示(拓扑排序乱搞+bitset)

    Time Limit: 20 Sec  Memory Limit: 512 MBSubmit: 348  Solved: 172[Submit][Status][Discuss] Descriptio ...

  2. BZOJ 4484: [Jsoi2015]最小表示(拓扑排序+bitset)

    传送门 解题思路 \(bitset\)维护连通性,给每个点开个\(bitset\),第\(i\)位为\(1\)则表示与第\(i\)位联通.算答案时显然要枚举每条边,而枚举边的顺序需要贪心,一个点先到达 ...

  3. [LOJ 3101] [Luogu 5332] [JSOI2019]精准预测(2-SAT+拓扑排序+bitset)

    [LOJ 3101] [Luogu 5332] [JSOI2019]精准预测(2-SAT+拓扑排序+bitset) 题面 题面较长,略 分析 首先,发现火星人只有死和活两种状态,考虑2-SAT 建图 ...

  4. BZOJ4484 JSOI2015最小表示(拓扑排序+bitset)

    考虑在每个点的出边中删除哪些.如果其出边所指向的点中存在某点能到达另一点,那么显然指向被到达点的边是没有用的.于是拓扑排序逆序处理,按拓扑序枚举出边,bitset维护可达点集合即可. #include ...

  5. NOIP 车站分级 (luogu 1983 & codevs 3294 & vijos 1851) - 拓扑排序 - bitset

    描述 一条单向的铁路线上,依次有编号为 1, 2, ..., n 的 n 个火车站.每个火车站都有一个级别,最低为 1 级.现有若干趟车次在这条线路上行驶,每一趟都满足如下要求:如果这趟车次停靠了火车 ...

  6. P2805 [NOI2009]植物大战僵尸(最小割+拓扑排序)

    题意: n*m的矩阵,每个位置都有一个植物.每个植物都有一个价值(可以为负),以及一些它可以攻击的位置.从每行的最右面开始放置僵尸,僵尸从右往左行动,当僵尸在植物攻击范围内时会立刻死亡.僵尸每到一个位 ...

  7. CH 2101 - 可达性统计 - [BFS拓扑排序+bitset状压]

    题目链接:传送门 描述 给定一张N个点M条边的有向无环图,分别统计从每个点出发能够到达的点的数量.N,M≤30000. 输入格式 第一行两个整数N,M,接下来M行每行两个整数x,y,表示从x到y的一条 ...

  8. BZOJ5109 CodePlus 2017大吉大利,晚上吃鸡!(最短路+拓扑排序+bitset)

    首先跑正反两遍dij求由起点/终点到某点的最短路条数,这样条件一就转化为f(S,A)*f(T,A)+f(S,B)*f(T,B)=f(S,T).同时建出最短路DAG,这样图中任何一条S到T的路径都是最短 ...

  9. HDU 1285 确定比赛名次【字典序最小的拓扑排序 + 优先队列】

    确定比赛名次 Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) Total Submis ...

随机推荐

  1. CentOS针对磁盘IO[jdb2进程]的优化

    CentOS的jdb2进程总是沾满io,查了一些资料后才知道,这个问题源自系统bug,在此记录一下解决办法: 将高IO的磁盘,用以下参数remount即可 mount -t ext4 -o remou ...

  2. (1)基于tcp协议的编程模型 (2)tcp协议和udp协议的比较 (3)基于udp协议的编程模型 (4)反射机制

    1.基于tcp协议的编程模型(重中之重)1.1 编程模型服务器: (1)创建ServerSocket类型的对象,并提供端口号: (2)等待客户端的连接请求,调用accept()方法: (3)使用输入输 ...

  3. CORS (Cross Origin Resources Share) 跨域

    CORS 跨域 1 什么是跨域问题 基于安全考虑,浏览器会限制使用脚本发起任何跨域请求. 所谓的跨域请求,就是与当前页面的 http/ip/port 不一样的请求. 但在实际运用中,跨域获取数据的需求 ...

  4. 【原创】Spring 注入方式

    Spring 强烈推荐注解在构造器上,且对于不能为null的字段或者属性都用断言. 1. 设值注入 原理:通过setter方法注入 XML配置方式:bean下的property标签,用value指定基 ...

  5. 4-5 R语言函数 split

    #split根据因子或因子列表将 向量或其他对象分组 #通常与lapply一起使用 #split(参数):split(向量/列表/数据框,因子/因子列表) > x <- c(rnorm(5 ...

  6. 丢手绢问题(约瑟夫问题)的python实现

    约瑟夫问题是个有名的问题:N个人围成一圈,从第一个开始报数,第M个将被杀掉,最后剩下一个,其余人都将被杀掉. def fnA(p, personNum, cnt): times = cnt // pe ...

  7. HBase学习之路 (九)HBase phoenix的使用

    HBase phoenix的下载 下载地址http://mirror.bit.edu.cn/apache/phoenix/ 选择对应的hbase版本进行下载,测试使用的是hbase-1.2.6版本

  8. Java基础加强之反射

    1.什么是反射? 反射其实就是动态的加载类,我们在写JDBC的时候加载驱动Class.forName("xxx")时就涉及到了反射. 反射机制是在运行状态中,对于任意一个类,都能够 ...

  9. 20145203盖泽双 《Java程序设计》第四周学习总结

    20145203盖泽双 <Java程序设计>第四周学习总结 教材学习内容总结 1.多个类中存在相同属性和行为时,将这些内容抽取到单独一个类中,那么多个类无需再定义这些属性和行为,只要继承单 ...

  10. js之radio应用实例

    radio和checkbox还有select,可谓是前后端常用三剑客啊!特别是checkbox和select,关于这两个今天不讲,因为在下面这几篇文章,我已经比较详细的讲解了. SpringMVC之a ...