Solution -「Gym 102956B」Beautiful Sequence Unraveling
\(\mathcal{Description}\)
Link.
求长度为 \(n\),值域为 \([1,m]\) 的整数序列 \(\lang a_n\rang\) 的个数,满足 \(\not\exist i\in[1,n),~\max_{j=1}^i\{a_j\}=\min_{j=i+1}^n\{a_j\}\),答案对大素数 \(p\) 取模。
\(n\le400\),\(m\le10^8\)。
\(\mathcal{Solution}\)
前几天刚胡了一个 "DP and DP" 的 trick,这不又遇见一道。(
注意到 \(m\) 很大,一副拒 DP 状态于千里之外的样子,尝试先回避它——将某个合法 \(\lang a_n\rang\) 离散化,此时值域不超过 \([1,n]\)。但“离散化”又要求值域中每个位置出现,那我们折中:只要求值域为 \([1,n]\),而不限制每个位置出现。可是为了将值域还原为 \([1,m]\),我们又势必得知“有多少个合法 \(\lang a_n\rang\),其中 \(a\) 有 \(x\) 种不同取值”。
一步步来,先考虑求出 \(f(i,j)\),表示长度为 \(i\) 的序列,值域在 \([1,j]\) 时的合法数量。总数减去不合法数,枚举最后一个不合法位置 \(k-1\),以及此时前缀 \(\max\) 和后缀 \(\min\) 的值 \(t\),可以发现 \(a_{k..n}\) 构成子问题,得到转移
\]
合理处理系数的指标和转移状态的下标,可以利用前缀和将求 \(f\) 的过程优化至 \(\mathcal O(n^3)\)。
如刚才透露的一般,我们在目标状态 \(f(n,1..n)\) 的基础下求“有 \(x\) 个不同取值”。令 \(g(i)\) 表示长度为 \(n\) 的序列中,离散化后满足值域恰为 \([1,i]\) 的合法数量,简单地
\]
答案变得显而易见
\]
其中组合数展开成下降幂暴力算即可。总复杂度 \(\mathcal O(n^3)\)。
\(\mathcal{Code}\)
/*~Rainybunny~*/
#include <cstdio>
#define rep( i, l, r ) for ( int i = l, rep##i = r; i <= rep##i; ++i )
#define per( i, r, l ) for ( int i = r, per##i = l; i >= per##i; --i )
const int MAXN = 400;
int n, m, P, fac[MAXN + 5], ifac[MAXN + 5];
int pwr[MAXN + 5][MAXN + 5], ipwr[MAXN + 5][MAXN + 5];
int f[MAXN + 5][MAXN + 5], g[MAXN + 5];
inline int mul( const int a, const int b ) { return 1ll * a * b % P; }
inline void subeq( int& a, const int b ) { ( a -= b ) < 0 && ( a += P ); }
inline int add( int a, const int b ) { return ( a += b ) < P ? a : a - P; }
inline void addeq( int& a, const int b ) { ( a += b ) >= P && ( a -= P ); }
inline int sub( int a, const int b ) { return ( a -= b ) < 0 ? a + P : a; }
inline int mpow( int a, int b ) {
int ret = 1;
for ( ; b; a = mul( a, a ), b >>= 1 ) ret = mul( ret, b & 1 ? a : 1 );
return ret;
}
inline void init() {
fac[0] = 1;
rep ( i, 1, n ) fac[i] = mul( i, fac[i - 1] );
ifac[n] = mpow( fac[n], P - 2 );
per ( i, n - 1, 0 ) ifac[i] = mul( i + 1, ifac[i + 1] );
rep ( i, 0, n ) {
pwr[i][0] = ipwr[i][0] = 1;
ipwr[i][1] = mpow( pwr[i][1] = i, P - 2 );
rep ( j, 2, n ) {
pwr[i][j] = mul( i, pwr[i][j - 1] );
ipwr[i][j] = mul( ipwr[i][j - 1], ipwr[i][1] );
}
}
}
inline int comb( const int a, const int b ) {
return a < b ? 0 : mul( fac[a], mul( ifac[b], ifac[a - b] ) );
}
int main() {
scanf( "%d %d %d", &n, &m, &P ), init();
rep ( j, 1, n ) {
static int sum[MAXN + 5][2];
rep ( i, 1, n ) sum[i][0] = sum[i][1] = 0;
rep ( i, 1, n ) {
int& cur = f[i][j] = pwr[j][i];
rep ( t, 1, j ) {
subeq( cur, mul( pwr[t][i], sum[t][0] ) );
addeq( cur, mul( pwr[t - 1][i], sum[t][1] ) );
}
rep ( t, 1, j ) {
addeq( sum[t][0], mul( ipwr[t][i],
sub( f[i][j - t + 1], f[i][j - t] ) ) );
addeq( sum[t][1], mul( ipwr[t - 1][i],
sub( f[i][j - t + 1], f[i][j - t] ) ) );
}
}
}
int ans = 0, c = 1;
rep ( i, 1, n ) {
int& cur = g[i] = f[n][i];
rep ( j, 1, i - 1 ) subeq( cur, mul( comb( i, j ), g[j] ) );
c = mul( c, mul( m - i + 1, ipwr[i][1] ) );
addeq( ans, mul( c, g[i] ) );
}
printf( "%d\n", ans );
return 0;
}
Solution -「Gym 102956B」Beautiful Sequence Unraveling的更多相关文章
- Solution -「Gym 102979E」Expected Distance
\(\mathcal{Description}\) Link. 用给定的 \(\{a_{n-1}\},\{c_n\}\) 生成一棵含有 \(n\) 个点的树,其中 \(u\) 连向 \([1, ...
- Solution -「Gym 102979L」 Lights On The Road
\(\mathcal{Description}\) Link. 给定序列 \(\{w_n\}\),选择 \(i\) 位置的代价为 \(w_i\),要求每个位置要不被选择,要不左右两个位置至少被 ...
- Solution -「Gym 102956F」Find the XOR
\(\mathcal{Description}\) Link. 给定 \(n\) 个点 \(m\) 条边的连通无向图 \(G\),边有边权.其中 \(u,v\) 的距离 \(d(u,v)\) ...
- Solution -「Gym 102956F」Border Similarity Undertaking
\(\mathcal{Description}\) Link. 给定一张 \(n\times m\) 的表格,每个格子上写有一个小写字母.求其中长宽至少为 \(2\),且边界格子上字母相同的矩 ...
- Solution -「Gym 102956A」Belarusian State University
\(\mathcal{Description}\) Link. 给定两个不超过 \(2^n-1\) 次的多项式 \(A,B\),对于第 \(i\in[0,n)\) 个二进制位,定义任意一个二元 ...
- Solution -「Gym 102798I」Sean the Cuber
\(\mathcal{Description}\) Link. 给定两个可还原的二阶魔方,求从其中一个状态拧到另一个状态的最小步数. 数据组数 \(T\le2.5\times10^5\). ...
- Solution -「Gym 102798K」Tree Tweaking
\(\mathcal{Description}\) Link. 给定排列 \(\{p_n\}\),求任意重排 \(p_{l..r}\) 的元素后,将 \(\{p_n\}\) 依次插入二叉搜索树 ...
- Solution -「Gym 102798E」So Many Possibilities...
\(\mathcal{Description}\) Link. 给定非负整数序列 \(\{a_n\}\) 和 \(m\),每次随机在 \(\{a\}\) 中取一个非零的 \(a_i\)(保证存 ...
- Solution -「Gym 102759I」Query On A Tree 17
\(\mathcal{Description}\) Link. 给定一棵含 \(n\) 个结点的树,结点 \(1\) 为根,点 \(u\) 初始有点权 \(a_u=0\),维护 \(q\) 次 ...
随机推荐
- 基于LNMP环境的Zabbix监控安装
一.准备LNMP环境 1.使用putty或类似的SSH工具登陆VPS或服务器: 登陆后运行:screen -S lnmp 如果提示screen: command not found 命令不存在可以执行 ...
- POJ 1664 放苹果 (递推思想)
原题链接:http://poj.org/problem?id=1664 思路:苹果m个,盘子n个.假设 f ( m , n ) 代表 m 个苹果,n个盘子有 f ( m , n ) 种放法. 根据 n ...
- python+selenium 元素定位--iframe
1. 一般webdriver要操作页面元素需要在Top Window的状态下,如下: 2.当浏览器显示iframe时,用正常的元素定位是没有效果的,需要将页面装换到iframe下再对页面元素进行操作 ...
- Zookeeper绍二(分布式锁介)
一.为什么会有分布式锁? 在多线程环境下,由于上下文的切换,数据可能出现不一致的情况或者数据被污染,我们需要保证数据安全,所以想到了加锁. 所谓的加锁机制呢,就是当一个线程访问该类的某个数据时,进行保 ...
- 【Java】流程控制
文章目录 流程控制 一.用户交互scanner 1.1 Scanner对象 1.2 Scanner进阶使用 二.顺序结构 三.选择结构 3.1 if单选择结构 3.2 if双选择结构 3.3 if多选 ...
- 【Java】GUI实现贪吃蛇
[Java]GUI实现贪吃蛇 前言 我们在做这个小游戏之前,得确保自己的AWT和Swing有一定的基础,并且会写一些简单的逻辑操作.这些都会在后面写的时候体现出来. 狂神老师从这里开始讲贪吃蛇的 我们 ...
- Javascript中字符串常用方法
JavaScript字符串常用方法 (1)获取相应位置的字符(charAt()) var str="你好,小小鸟!" var s=str.charAt(1) //获取到索引为1的字 ...
- 676. Implement Magic Dictionary
Implement a magic directory with buildDict, and search methods. For the method buildDict, you'll be ...
- go get失败解决办法
go get时由于防火墙的原因,会导致失败.目前可以通过修改GOPROXY的方法解决该问题. 无论是在win下还是linux,macos下,只需要将环境变量GOPROXY设置成https://gopr ...
- vue 快速入门 系列 —— 实例方法(或 property)和静态方法
其他章节请看: vue 快速入门 系列 实例方法(或 property)和静态方法 在 Vue(自身) 项目结构 一文中,我们研究了 vue 项目自身构建过程,也知晓了 import Vue from ...