[hdu7076]ZYB's kingdom
不难发现,操作1可以看作如下操作:对于删去$a_{1},a_{2},...,a_{k}$后的每一个连通块(的点集)$V$,令$\forall x\in V,x$的收益加上$s$(其中$s=\sum_{x\in V}c_{x}$)
考虑建立类似于虚树的东西,即将每一个$a_{i}$连到第一个在$a_{i}$中的祖先,接下来遍历这棵新树(森林),对每一个节点枚举其在原树上的所有儿子,考虑该儿子的子树,分类讨论:
1.若这棵子树中没有$a_{i}$中的点,直接暴力修改(对dfs序维护线段树)
2.若这棵子树中有$a_{i}$中的点,找到还是其儿子的点(同时在其该子树中),将这些子树的dfs区间在整个区间中删掉,即将整个区间划分为若干段分别查询后求和并(分别)修改
关于如何建立前者的虚树,可以将所有节点子树对应的dfs区间排序后遍历一遍,或者也可以建立虚树之后再删除不在$a_{i}$中的点,时间复杂度均为$o(k\log n)$
但是,这样的操作次数(指对线段树)并不是$o(k)$,瓶颈是在于第1类(第2类虽然看似复杂但仔细分析不难发现其是$o(k)$的),考虑如何处理:
先树链剖分预处理,并找到所有第2类中的儿子和重儿子,用之前的方式处理(这里只有$o(k)$次),并在该节点上打一个修改标记,查询时$v$到根路径上根据重链顶端的父亲的标记对该重链顶端子树修改
(为了方便,可以将第2类中的轻儿子再减去子树和)
另外,还有一些细节问题:
1.需要去掉自己与自己贸易的情况,可以通过对这$a_{i}$个点的收益补上$c_{a_{i}}$,并再在操作2时将此时的答案额外减去$mc_{v}$即可(其中$m$为之前操作1的次数),显然这容易维护
2.如果1不在$a_{i}$中,实际上忽略了最外部的连通块(严格来说即包含1的连通块),可以通过建边$(0,1)$并将0强制加入$a_{i}$中解决(或特判)
综上,总复杂度为$o((q+\sum k)\log n)$,可以通过
1 #include<bits/stdc++.h>
2 using namespace std;
3 #define N 200005
4 #define ll long long
5 #define fi first
6 #define se second
7 #define L (k<<1)
8 #define R (L+1)
9 #define mid (l+r>>1)
10 struct Edge{
11 int nex,to;
12 }edge[N<<1];
13 int E,t,n,m,q,p,x,y,head[N],c[N],sz[N],mx[N],dep[N],fa[N][20],dfn[N],idfn[N],top[N],st[N],tag[N];
14 ll sum[N],f[N];
15 pair<int,int>a[N];
16 vector<int>v[N];
17 int lowbit(int k){
18 return (k&(-k));
19 }
20 ll get_sum(int k){
21 return sum[dfn[k]+sz[k]-1]-sum[dfn[k]-1];
22 }
23 void add(int x,int y){
24 edge[E].nex=head[x];
25 edge[E].to=y;
26 head[x]=E++;
27 }
28 int get_son(int x,int y){
29 for(int i=19;i>=0;i--)
30 if (dep[fa[x][i]]>dep[y])x=fa[x][i];
31 return x;
32 }
33 void dfs1(int k,int f,int s){
34 sz[k]=1,mx[k]=0,dep[k]=s,fa[k][0]=f;
35 for(int i=1;i<20;i++)fa[k][i]=fa[fa[k][i-1]][i-1];
36 for(int i=head[k];i!=-1;i=edge[i].nex)
37 if (edge[i].to!=f){
38 dfs1(edge[i].to,k,s+1);
39 sz[k]+=sz[edge[i].to];
40 if ((!mx[k])||(sz[mx[k]]<sz[edge[i].to]))mx[k]=edge[i].to;
41 }
42 }
43 void dfs2(int k,int f,int t){
44 dfn[k]=++dfn[0],idfn[dfn[0]]=k,top[k]=t;
45 if (mx[k])dfs2(mx[k],k,t);
46 for(int i=head[k];i!=-1;i=edge[i].nex)
47 if ((edge[i].to!=f)&&(edge[i].to!=mx[k]))dfs2(edge[i].to,k,edge[i].to);
48 }
49 void update(int k,ll x){
50 while (k<=n){
51 f[k]+=x;
52 k+=lowbit(k);
53 }
54 }
55 void update(int x,int y,ll z){
56 update(x,z);
57 if (y<n)update(y+1,-z);
58 }
59 void dfs(int k){
60 if (k)tag[k]++;
61 bool flag=0;
62 for(int i=0,j=0;i<v[k].size();i=j){
63 int son=get_son(v[k][i],k);
64 ll s=get_sum(son);
65 while ((j<v[k].size())&&(get_son(v[k][j],k)==son))s-=get_sum(v[k][j++]);
66 update(dfn[son],dfn[son]+sz[son]-1,s);
67 for(int t=i;t<j;t++)update(dfn[v[k][t]],dfn[v[k][t]]+sz[v[k][t]]-1,-s);
68 if (son==mx[k])flag=1;
69 else update(dfn[son],dfn[son]+sz[son]-1,-get_sum(son));
70 }
71 if ((!flag)&&(mx[k]))update(dfn[mx[k]],dfn[mx[k]]+sz[mx[k]]-1,get_sum(mx[k]));
72 for(int i=0;i<v[k].size();i++)dfs(v[k][i]);
73 v[k].clear();
74 }
75 ll query(int k){
76 ll ans=0;
77 for(int i=dfn[k];i;i-=lowbit(i))ans+=f[i];
78 ans-=(ll)m*c[k];
79 while (k){
80 ans+=tag[fa[top[k]][0]]*get_sum(top[k]);
81 k=fa[top[k]][0];
82 }
83 return ans;
84 }
85 int main(){
86 scanf("%d",&t);
87 while (t--){
88 scanf("%d%d",&n,&q);
89 E=m=dfn[0]=0;
90 memset(head,-1,sizeof(head));
91 memset(tag,0,sizeof(tag));
92 memset(f,0,sizeof(f));
93 for(int i=1;i<n;i++){
94 scanf("%d%d",&x,&y);
95 add(x,y),add(y,x);
96 }
97 dfs1(1,0,1),dfs2(1,0,1);
98 dfn[0]=mx[0]=1,sz[0]=n;
99 for(int i=1;i<=n;i++)scanf("%d",&c[i]);
100 for(int i=1;i<=n;i++)sum[i]=sum[i-1]+c[idfn[i]];
101 for(int i=1;i<=q;i++){
102 scanf("%d%d",&p,&x);
103 if (p==1){
104 m++;
105 for(int j=1;j<=x;j++){
106 scanf("%d",&y);
107 update(dfn[y],dfn[y],c[y]);
108 a[j]=make_pair(dfn[y],dfn[y]+sz[y]-1);
109 }
110 sort(a+1,a+x+1);
111 st[0]=0;
112 for(int j=1;j<=x;j++){
113 while ((st[0])&&(a[st[st[0]]].se<a[j].se))st[0]--;
114 v[idfn[a[st[st[0]]].fi]].push_back(idfn[a[j].fi]);
115 st[++st[0]]=j;
116 }
117 dfs(0);
118 }
119 if (p==2)printf("%lld\n",query(x));
120 }
121 }
122 return 0;
123 }
[hdu7076]ZYB's kingdom的更多相关文章
- 线段树 - ZYB's Premutation
ZYB has a premutation P,but he only remeber the reverse log of each prefix of the premutation,now he ...
- Constructing Roads In JGShining's Kingdom(HDU1025)(LCS序列的变行)
Constructing Roads In JGShining's Kingdom HDU1025 题目主要理解要用LCS进行求解! 并且一般的求法会超时!!要用二分!!! 最后蛋疼的是输出格式的注 ...
- 拓扑排序 --- hdu 4948 : Kingdom
Kingdom Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)Total Sub ...
- codeforces 613D:Kingdom and its Cities
Description Meanwhile, the kingdom of K is getting ready for the marriage of the King's daughter. Ho ...
- Bestcoder round #65 && hdu 5593 ZYB's Tree 树形dp
Time Limit: 3000/1500 MS (Java/Others) Memory Limit: 131072/131072 K (Java/Others)Total Submissio ...
- Bestcoder round #65 && hdu 5592 ZYB's Premutation 线段树
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 131072/131072 K (Java/Others)Total Submissio ...
- HDU 4777 Rabbit Kingdom (2013杭州赛区1008题,预处理,树状数组)
Rabbit Kingdom Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)To ...
- [ACM] hdu 1025 Constructing Roads In JGShining's Kingdom (最长递增子序列,lower_bound使用)
Constructing Roads In JGShining's Kingdom Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65 ...
- Codeforces Round #360 (Div. 1) D. Dividing Kingdom II 并查集求奇偶元环
D. Dividing Kingdom II Long time ago, there was a great kingdom and it was being ruled by The Grea ...
随机推荐
- Windows10系统下Java JDK下载、安装与环境变量配置(全网最全步骤)
1.首先要明确: JDK.JRE.JVM的含义 2.下载目前最新的JDK:Java SE Development Kit 17,传送门::https://www.oracle.com/java/tec ...
- Azure Devops实践(5)- 构建springboot项目打包docker镜像及容器化部署
使用Azure Devops构建java springboot项目,创建镜像并容器化部署 1.创建一个springboot项目,我用现有的项目 目录结构如下,使用provider项目 在根目录下添加D ...
- Android QMUI实战:沉浸式/适配状态栏
近期研究QMUI换肤的实现,顺便分析了下QMUI的沉浸式. 网上已有很多关于QMUI实现页面沉浸式的文章,简而言之:复杂了. 本期,我们仅通过几行代码,即可完美实现页面沉浸式效果,并轻松匹配换肤的色彩 ...
- 返回值优化 RVO
<深度探索C++对象模型>-- 2.3 返回值的初始化 & 在编译器层面做优化
- Go语言核心36讲(Go语言进阶技术三)--学习笔记
09 | 字典的操作和约束 至今为止,我们讲过的集合类的高级数据类型都属于针对单一元素的容器. 它们或用连续存储,或用互存指针的方式收纳元素,这里的每个元素都代表了一个从属某一类型的独立值. 我们今天 ...
- 力扣 - 剑指 Offer 53 - I. 在排序数组中查找数字 I
题目 剑指 Offer 53 - I. 在排序数组中查找数字 I 思路1 一般来说,首先想到的是使用一个变量,从头开始遍历整个数组,记录target数组出现的次数,但是这样的时间复杂度是O(n),还是 ...
- Coursera Deep Learning笔记 序列模型(三)Sequence models & Attention mechanism(序列模型和注意力机制)
参考 1. 基础模型(Basic Model) Sequence to sequence模型(Seq2Seq) 从机器翻译到语音识别方面都有着广泛的应用. 举例: 该机器翻译问题,可以使用" ...
- 【BZOJ 1419】Red is good [概率DP]
我 是 Z Z 概率好玄啊(好吧是我太弱.jpg Description 桌面上有R张红牌和B张黑牌,随机打乱顺序后放在桌面上,开始一张一张地翻牌,翻到红牌得到1美元,黑牌则付出1美元.可以随时停止翻 ...
- Spring源码分析-BeanFactoryPostProcessor
Spring源码分析-BeanFactoryPostProcessor 博主技术有限,本文难免有错误的地方,如果您发现了欢迎评论私信指出,谢谢 BeanFactoryPostProcessor接口是S ...
- 从零开始的DIY智能家居 - 基于 ESP32 的智能水浊度传感器
前言 家里有个鱼缸养了几条鱼来玩玩,但是换水的问题着实头疼,经常一个不注意就忘记换水,鱼儿就没了.o(╥﹏╥)o 在获得 Spirit 1 边缘计算机 后就相当于有了一个人智能设备服务器,可以自己开发 ...