Description

小W 是一片新造公墓的管理人。公墓可以看成一块 \(N×M\) 的矩形,矩形的每个格点,要么种着一棵常青树,要么是一块还没有归属的墓地。当地的居民都是非常虔诚的基督徒,他们愿意提前为自己找一块合适墓地。为了体 现自己对主的真诚,他们希望自己的墓地拥有着较高的虔诚度。一块墓地的虔诚度是指以这块墓地为中心的十字架的数目。一个十字架可以看成中间是墓地,墓地的 正上、正下、正左、正右都有恰好 $k$ 棵常青树。小W 希望知道他所管理的这片公墓中所有墓地的虔诚度总和是多少

Input

第 一行包含两个用空格分隔的正整数 $N$ 和 $M$,表示公墓的宽和长,因此这个矩形公墓共有$(N+1) ×(M+1)$个格点,左下角的坐标为$(0, 0)$,右上角的坐标为$(N, M)$。第二行包含一个正整数 $W$,表示公墓中常青树的个数。第三行起共 $W$ 行,每行包含两个用空格分隔的非负整数$x_i$和$y_i$,表示一棵常青树的坐标。输入保证没有两棵常青树拥有相同的坐标。最后一行包含一个正整数$k$,意义如题目 所示。

Output

包含一个非负整数,表示这片公墓中所有墓地的虔诚度总和。为了方便起见,答案对$2,147,483,648$ 取模。

HINT

图中,以墓地$(2, 2)$和$(2, 3)$为中心的十字架各有$3$个,即它们的虔诚度均为$3$。其他墓地的虔诚度为$0$。

所有数据满足$1 \le N, M \le 1,000,000,000$,$0 \le xi \le N$,$0 \le yi \le M$,$1 \le W \le 100,000$,$ 1 \le k \le 10$。

存在$50\%$的数据,满足$1 \le k \le 2$。存在$25\%$的数据,满足$1 \le W \le 10000$。

注意:”恰好有$k$颗树“,这里的恰好不是有且只有,而是从不少于$k$棵的树中恰好选$k$棵

  这道题初看毫无想法……再看仍没有想法……依稀记得以前看过这道题,于是回忆了一下题解,终于知道怎么做了……

  首先,我们可以将坐标离散化(其实只要离散化$x$坐标就够了)。因为所有会产生贡献的墓地上、下、左、右一定都有常青树,因此这些墓地肯定可以由离散化之后的坐标表示。

  然后,我们对每棵常青树$i$求出它的上、下、左、右分别有多少棵常青树(不包括它本身),分别记为$u_i$,$d_i$,$l_i$,$r_i$。这个东西可以将常青树排序后扫一遍求出来。

  接着,我们考虑使用一个扫描线从下往上扫。每到一行,我们可以求一下这一行的墓地会产生多少贡献。即,对于相邻的两棵常青树$i$和$j$($i$在$j$左边),我们设墓地$(i,j)$上方的常青树有$U_{i,j}$棵,下方的常青树有$D_{i,j}$棵,第$i$棵常青树坐标为$x_i,y_j$,那么对答案产生的贡献为:

$$\binom{r_j+1}{k} \binom{l_i+1}{k} \sum_{K=x_i+1}^{x_j-1} \binom{U_{K,y_i}}{k} \binom{D_{K,y_i}}{k}$$

  于是我们现在要考虑的就是如何维护要求和的那个东西。

  一般这种区间和的东西都可以用一个树状数组来维护。像这道题,我们可以将横坐标离散化,然后对横坐标建一个树状数组来维护这个东西。当我们每扫到一棵常青树的时候,就可以把这个横坐标维护的值在树状数组中修改一下即可。区间求和树状数组轻松解决。

  还有一个细节。这道题的模数是$2147483648$,那么我们完全可以使用$unsigned$ $int$来自然溢出,最后再把结果与上$2147483647$即可。

  所以这道题就这么解决了。我的代码还写了一点注释,不懂实现细节的话可以看一下。

  下面贴代码:

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
#define File(s) freopen(s".in","r",stdin),freopen(s".out","w",stdout)
#define maxn 100010 using namespace std;
typedef unsigned int llg; struct data{
int x,y,b;
}s[maxn];
int n,m,W,wx[maxn],dx[maxn],lx,N,k;
int l[maxn],r[maxn],u[maxn],d[maxn];
llg c[maxn],Cc[maxn][11],ans; int getint(){
int w=0;bool q=0;
char c=getchar();
while((c>'9'||c<'0')&&c!='-') c=getchar();
if(c=='-') c=getchar(),q=1;
while(c>='0'&&c<='9') w=w*10+c-'0',c=getchar();
return q?-w:w;
} inline llg C(int x){return Cc[x][k];}//这个函数表示从x个数中去出k个的方案数
bool cmpx(data a,data b){if(a.x==b.x) return a.y<b.y;return a.x<b.x;}
bool cmpy(data a,data b){if(a.y==b.y) return a.x<b.x;return a.y<b.y;}
void add(int x,llg y){while(x<=lx) c[x]+=y,x+=x&(-x);}
llg sum(int x){
llg t=0;
while(x) t+=c[x],x-=x&(-x);
return t;
} void init(){
sort(s+1,s+W+1,cmpx);
for(int i=1;i<=W;i++){
int j=i,now=0;
while(s[j+1].x==s[j].x) j++,d[s[j].b]=++now;
while(i<=j) u[s[i].b]=now--,i++; i--;
N=max(N,d[s[j].b]);
}//求u,d两个数组
sort(s+1,s+W+1,cmpy);
for(int i=1;i<=W;i++){
int j=i,now=0;
while(s[j+1].y==s[j].y) j++,l[s[j].b]=++now;
while(i<=j) r[s[i].b]=now--,i++; i--;
N=max(N,l[s[j].b]);
}//求l,r两个数组
for(int i=0;i<=N;i++) Cc[i][0]=Cc[i][i]=1;
for(int i=2;i<=N;i++)
for(int j=1;j<=k;j++)
Cc[i][j]=Cc[i-1][j-1]+Cc[i-1][j];
} int main(){
File("a");
n=getint()+1; m=getint()+1; W=getint();
for(int i=1;i<=W;i++) dx[++lx]=s[i].x=getint()+1,s[i].y=getint()+1,s[i].b=i;
k=getint(); sort(dx+1,dx+lx+1); lx=unique(dx+1,dx+lx+1)-dx-1; init();
for(int i=1;i<=W;i++) wx[i]=lower_bound(dx+1,dx+lx+1,s[i].x)-dx;//离散化坐标
for(int i=1,j;i<=W;i=j+1){
j=i; add(wx[i],C(d[s[i].b]+1)*C(u[s[i].b])-C(d[s[i].b])*C(u[s[i].b]+1));//修改第i棵常青树对应的树状数组
while(s[j+1].y==s[j].y){
j++; ans+=C(l[s[j-1].b]+1)*C(r[s[j].b]+1)*(sum(wx[j]-1)-sum(wx[j-1]));//统计答案
add(wx[j],C(d[s[j].b]+1)*C(u[s[j].b])-C(d[s[j].b])*C(u[s[j].b]+1));//修改第j棵常青树对应的树状数组
}
}
printf("%d",ans&2147483647);
return 0;
}

BZOJ 1227 【SDOI2009】 虔诚的墓主人的更多相关文章

  1. BZOJ 1227: [SDOI2009]虔诚的墓主人

    1227: [SDOI2009]虔诚的墓主人 Time Limit: 5 Sec  Memory Limit: 259 MBSubmit: 1078  Solved: 510[Submit][Stat ...

  2. Bzoj 1227: [SDOI2009]虔诚的墓主人 树状数组,离散化,组合数学

    1227: [SDOI2009]虔诚的墓主人 Time Limit: 5 Sec  Memory Limit: 259 MBSubmit: 895  Solved: 422[Submit][Statu ...

  3. BZOJ 1227 [SDOI2009]虔诚的墓主人 - 扫描线

    Solution 离散化 扫描线, 并用 $rest[i]$ 和 $cnt[i]$ 记录 第$i$列 总共有 $cnt[i]$棵常青树, 还有$rest[i]$ 没有被扫描到. 那么 第$i$ 列的方 ...

  4. 【以前的空间】bzoj 1227 [SDOI2009]虔诚的墓主人

    题解:hzw大神的博客说的很清楚嘛 http://hzwer.com/1941.html 朴素的做法就是每个点如果它不是墓地那么就可形成十字架的数量就是这个c(点左边的树的数量,k)*c(点右边的树的 ...

  5. 1227: [SDOI2009]虔诚的墓主人

    1227: [SDOI2009]虔诚的墓主人 Time Limit: 5 Sec  Memory Limit: 259 MBSubmit: 1083  Solved: 514[Submit][Stat ...

  6. bzoj1227 [SDOI2009]虔诚的墓主人(组合公式+离散化+线段树)

    1227: [SDOI2009]虔诚的墓主人 Time Limit: 5 Sec  Memory Limit: 259 MBSubmit: 803  Solved: 372[Submit][Statu ...

  7. [BZOJ1227][SDOI2009]虔诚的墓主人 组合数+树状数组

    1227: [SDOI2009]虔诚的墓主人 Time Limit: 5 Sec  Memory Limit: 259 MBSubmit: 1433  Solved: 672[Submit][Stat ...

  8. 【BZOJ1227】[SDOI2009]虔诚的墓主人(线段树)

    [BZOJ1227][SDOI2009]虔诚的墓主人(线段树) 题面 BZOJ 洛谷 题解 显然发现答案就是对于每一个空位置,考虑上下左右各有多少棵树,然后就是这四个方向上树的数量中选\(K\)棵出来 ...

  9. bzoj1227 P2154 [SDOI2009]虔诚的墓主人

    P2154 [SDOI2009]虔诚的墓主人 组合数学+离散化+树状数组 先看题,结合样例分析,易得每个墓地的虔诚度=C(正左几棵,k)*C(正右几棵,k)*C(正上几棵,k)*C(正下几棵,k),如 ...

  10. BZOJ1227 SDOI2009 虔诚的墓主人【树状数组+组合数】【好题】*

    BZOJ1227 SDOI2009 虔诚的墓主人 Description 小W 是一片新造公墓的管理人.公墓可以看成一块N×M 的矩形,矩形的每个格点,要么种着一棵常青树,要么是一块还没有归属的墓地. ...

随机推荐

  1. CentOS 6.4 服务器版安装教程(超级详细图解)

    附:CentOS 6.4下载地址 32位:http://mirror.centos.org/centos/6.4/isos/i386/CentOS-6.4-i386-bin-DVD1to2.torre ...

  2. 《C#微信开发系列(1)-启用开发者模式》

    1.0启用开发者模式 ①填写服务器配置 启用开发模式需要先成为开发者,而且编辑模式和开发模式只能选择一个(进入微信公众平台=>开发=>基本配置)就可以看到以下的界面: 点击修改配置,会出现 ...

  3. 如何调用外部的Web API

    Uri uri = new Uri(url + "?" + postData); System.Net.HttpWebRequest request = (System.Net.H ...

  4. 前端HTML规范

    HTML规范 - 整体结构 文件应以“<!DOCTYPE ......>”首行顶格开始,推荐使用“<!DOCTYPE html>”. 必须申明文档的编码charset,且与文件 ...

  5. SharePoint 2013 文档上传的多种形式

    SharePoint 2013 中的某些功能需要使用 ActiveX 控件.这会在不支持 ActiveX 的浏览器上产生限制.目前只有 32 位版本的 Internet Explorer 支持此功能. ...

  6. Sharepoint学习笔记—习题系列--70-576习题解析 -(Q141-Q143)

    Question  141 You are planning an upgrade to a SharePoint 2010 application. You have the following r ...

  7. VS2015搭建GoogleTest框架--配置第一个项目

    最近公司要我学习Google的测试框架google test:https://github.com/google/googletest. GoogleTest是C++的测试框架,我一个学习Java的, ...

  8. Linux2.6内核--进程调度理论

    从1991年Linux的第1版到后来的2.4内核系列,Linux的调度程序都相当简陋,设计近乎原始,见0.11版内核进程调度.当然它很容易理解,但是它在众多可运行进程或者多处理器的环境下都难以胜任. ...

  9. 如何提升代码编译的速度 iOS

    前阵子有遇到代码编译速度慢的问题,特别是在swift和object-c混编的过程中问题很突显. 网上找到一篇蛮好的文章里面又一些解决方法 推荐一下 http://www.open-open.com/l ...

  10. 谈谈Fragment中的onActivityResult

    大家或许有遇到这个神坑,在Fragment中使用startActivityForResult能够成功,可是在Fragment中的onActivityResult却无法被调用.一不注意就让人一夜愁白了头 ...