1. Optimization Methods

Gradient descent goes "downhill" on a cost function \(J\). Think of it as trying to do this:


**Figure 1** : **Minimizing the cost is like finding the lowest point in a hilly landscape**
At each step of the training, you update your parameters following a certain direction to try to get to the lowest possible point.

Notations: As usual, \(\frac{\partial J}{\partial a}=\) da for any variable a.

To get started, run the following code to import the libraries you will need.

import numpy as np
import matplotlib.pyplot as plt
import scipy.io
import math
import sklearn
import sklearn.datasets from opt_utils import load_params_and_grads, initialize_parameters, forward_propagation, backward_propagation
from opt_utils import compute_cost, predict, predict_dec, plot_decision_boundary, load_dataset
from testCases import * %matplotlib inline
plt.rcParams['figure.figsize'] = (7.0, 4.0) # set default size of plots
plt.rcParams['image.interpolation'] = 'nearest'
plt.rcParams['image.cmap'] = 'gray'

1.1 - Gradient Descent

A simple optimization method in machine learning is gradient descent (GD). When you take gradient steps with respect to all \(m\) examples on each step, it is also called Batch Gradient Descent.

Warm-up exercise: Implement the gradient descent update rule. The gradient descent rule is, for \(l = 1, ..., L\):

\[W^{[l]} = W^{[l]} - \alpha \text{ } dW^{[l]} \tag{1}
\]
\[b^{[l]} = b^{[l]} - \alpha \text{ } db^{[l]} \tag{2}
\]

where L is the number of layers and \(\alpha\) is the learning rate. All parameters should be stored in the parameters dictionary. Note that the iterator l starts at 0 in the for loop while the first parameters are \(W^{[1]}\) and \(b^{[1]}\). You need to shift l to l+1 when coding.

# GRADED FUNCTION: update_parameters_with_gd

def update_parameters_with_gd(parameters, grads, learning_rate):
"""
Update parameters using one step of gradient descent Arguments:
parameters -- python dictionary containing your parameters to be updated:
parameters['W' + str(l)] = Wl
parameters['b' + str(l)] = bl
grads -- python dictionary containing your gradients to update each parameters:
grads['dW' + str(l)] = dWl
grads['db' + str(l)] = dbl
learning_rate -- the learning rate, scalar. Returns:
parameters -- python dictionary containing your updated parameters
""" L = len(parameters) // 2 # number of layers in the neural networks # Update rule for each parameter
for l in range(L):
### START CODE HERE ### (approx. 2 lines)
parameters['W' + str(l+1)] = parameters['W' + str(l+1)] - learning_rate*grads['dW' + str(l+1)]
parameters['b' + str(l+1)] = parameters['b' + str(l+1)] - learning_rate*grads['db' + str(l+1)]
### END CODE HERE ### return parameters

测试:

parameters, grads, learning_rate = update_parameters_with_gd_test_case()

parameters = update_parameters_with_gd(parameters, grads, learning_rate)
print("W1 = " + str(parameters["W1"]))
print("b1 = " + str(parameters["b1"]))
print("W2 = " + str(parameters["W2"]))
print("b2 = " + str(parameters["b2"]))

输出:

W1 = [[ 1.63535156 -0.62320365 -0.53718766]

[-1.07799357 0.85639907 -2.29470142]]

b1 = [[ 1.74604067]

[-0.75184921]]

W2 = [[ 0.32171798 -0.25467393 1.46902454]

[-2.05617317 -0.31554548 -0.3756023 ]

[ 1.1404819 -1.09976462 -0.1612551 ]]

b2 = [[-0.88020257]

[ 0.02561572]

[ 0.57539477]]

A variant of this is Stochastic Gradient Descent (SGD), which is equivalent to mini-batch gradient descent where each mini-batch has just 1 example. The update rule that you have just implemented does not change. What changes is that you would be computing gradients on just one training example at a time, rather than on the whole training set. The code examples below illustrate the difference between stochastic gradient descent and (batch) gradient descent.

  • (Batch) Gradient Descent:
X = data_input
Y = labels
parameters = initialize_parameters(layers_dims)
for i in range(0, num_iterations):
# Forward propagation
a, caches = forward_propagation(X, parameters)
# Compute cost.
cost = compute_cost(a, Y)
# Backward propagation.
grads = backward_propagation(a, caches, parameters)
# Update parameters.
parameters = update_parameters(parameters, grads)
  • Stochastic Gradient Descent:
X = data_input
Y = labels
parameters = initialize_parameters(layers_dims)
for i in range(0, num_iterations):
for j in range(0, m):
# Forward propagation
a, caches = forward_propagation(X[:,j], parameters)
# Compute cost
cost = compute_cost(a, Y[:,j])
# Backward propagation
grads = backward_propagation(a, caches, parameters)
# Update parameters.
parameters = update_parameters(parameters, grads)

In Stochastic Gradient Descent, you use only 1 training example before updating the gradients. When the training set is large, SGD can be faster. But the parameters will "oscillate" toward the minimum rather than converge smoothly. Here is an illustration of this:


**Figure 1** : **SGD vs GD**
"+" denotes a minimum of the cost. SGD leads to many oscillations(振动) to reach convergence(收敛). But each step is a lot faster to compute for SGD than for GD, as it uses only one training example (vs. the whole batch for GD).

Note also that implementing SGD requires 3 for-loops in total:

  1. Over the number of iterations
  2. Over the \(m\) training examples
  3. Over the layers (to update all parameters, from \((W^{[1]},b^{[1]})\) to \((W^{[L]},b^{[L]})\))

In practice, you'll often get faster results if you do not use neither the whole training set, nor only one training example, to perform each update. Mini-batch gradient descent uses an intermediate number of examples for each step. With mini-batch gradient descent, you loop over the mini-batches instead of looping over individual training examples.


**Figure 2** : **SGD vs Mini-Batch GD**
"+" denotes a minimum of the cost. Using mini-batches in your optimization algorithm often leads to faster optimization.

What you should remember:

  • The difference between gradient descent, mini-batch gradient descent and stochastic gradient descent is the number of examples you use to perform one update step.
  • You have to tune a learning rate hyperparameter \(\alpha\).
  • With a well-turned mini-batch size, usually it outperforms either gradient descent or stochastic gradient descent (particularly when the training set is large).

1.2 - Mini-Batch Gradient descent

Let's learn how to build mini-batches from the training set (X, Y).

There are two steps:

  • Shuffle(洗牌): Create a shuffled version of the training set (X, Y) as shown below. Each column of X and Y represents a training example. Note that the random shuffling is done synchronously(同步地) between X and Y. Such that after the shuffling the \(i^{th}\) column of X is the example corresponding to the \(i^{th}\) label in Y. The shuffling step ensures that examples will be split randomly into different mini-batches.

  • Partition(分割): Partition the shuffled (X, Y) into mini-batches of size mini_batch_size (here 64). Note that the number of training examples is not always divisible(可分割的) by mini_batch_size. The last mini batch might be smaller, but you don't need to worry about this. When the final mini-batch is smaller than the full mini_batch_size, it will look like this:

Exercise: Implement random_mini_batches. We coded the shuffling part for you. To help you with the partitioning step, we give you the following code that selects the indexes for the \(1^{st}\) and \(2^{nd}\) mini-batches:

first_mini_batch_X = shuffled_X[:, 0 : mini_batch_size]
second_mini_batch_X = shuffled_X[:, mini_batch_size : 2 * mini_batch_size]
...

Note that the last mini-batch might end up smaller than mini_batch_size=64. Let \(\lfloor s \rfloor\) represents \(s\) rounded down to the nearest integer (this is math.floor(s) in Python). If the total number of examples is not a multiple of mini_batch_size=64 then there will be \(\lfloor \frac{m}{mini\_batch\_size}\rfloor\) mini-batches with a full 64 examples, and the number of examples in the final mini-batch will be (\(m-mini_\_batch_\_size \times \lfloor \frac{m}{mini\_batch\_size}\rfloor\)).

# GRADED FUNCTION: random_mini_batches

def random_mini_batches(X, Y, mini_batch_size = 64, seed = 0):
"""
Creates a list of random minibatches from (X, Y) Arguments:
X -- input data, of shape (input size, number of examples)
Y -- true "label" vector (1 for blue dot / 0 for red dot), of shape (1, number of examples)
mini_batch_size -- size of the mini-batches, integer Returns:
mini_batches -- list of synchronous (mini_batch_X, mini_batch_Y)
""" np.random.seed(seed) # To make your "random" minibatches the same as ours
m = X.shape[1] # number of training examples
mini_batches = [] # Step 1: Shuffle (X, Y)
permutation = list(np.random.permutation(m))
shuffled_X = X[:, permutation]
shuffled_Y = Y[:, permutation].reshape((1,m)) # Step 2: Partition (shuffled_X, shuffled_Y). Minus the end case.
num_complete_minibatches = math.floor(m/mini_batch_size) # number of mini batches of size mini_batch_size in your partitionning
for k in range(0, num_complete_minibatches):
### START CODE HERE ### (approx. 2 lines)
mini_batch_X = shuffled_X[:, k*mini_batch_size : (k+1)*mini_batch_size]
mini_batch_Y = shuffled_Y[:, k*mini_batch_size : (k+1)*mini_batch_size]
### END CODE HERE ###
mini_batch = (mini_batch_X, mini_batch_Y)
mini_batches.append(mini_batch) # Handling the end case (last mini-batch < mini_batch_size)
if m % mini_batch_size != 0:
### START CODE HERE ### (approx. 2 lines)
mini_batch_X = shuffled_X[:, num_complete_minibatches*mini_batch_size: ]
mini_batch_Y = shuffled_Y[:, num_complete_minibatches*mini_batch_size: ]
### END CODE HERE ###
mini_batch = (mini_batch_X, mini_batch_Y)
mini_batches.append(mini_batch) return mini_batches
X_assess, Y_assess, mini_batch_size = random_mini_batches_test_case()
mini_batches = random_mini_batches(X_assess, Y_assess, mini_batch_size) print ("shape of the 1st mini_batch_X: " + str(mini_batches[0][0].shape))
print ("shape of the 2nd mini_batch_X: " + str(mini_batches[1][0].shape))
print ("shape of the 3rd mini_batch_X: " + str(mini_batches[2][0].shape)) print ("shape of the 1st mini_batch_Y: " + str(mini_batches[0][1].shape))
print ("shape of the 2nd mini_batch_Y: " + str(mini_batches[1][1].shape))
print ("shape of the 3rd mini_batch_Y: " + str(mini_batches[2][1].shape)) print ("mini batch sanity check: " + str(mini_batches[0][0][1][0:3]))
print ("mini batch sanity check: " + str(mini_batches[0][1][0][0:3]))

输出:

shape of the 1st mini_batch_X: (12288, 64)

shape of the 2nd mini_batch_X: (12288, 64)

shape of the 3rd mini_batch_X: (12288, 20)

shape of the 1st mini_batch_Y: (1, 64)

shape of the 2nd mini_batch_Y: (1, 64)

shape of the 3rd mini_batch_Y: (1, 20)

mini batch sanity check: [ 2.52832571 -0.10015523 -0.61736206]

mini batch sanity check: [ True False True]

What you should remember:

  • Shuffling and Partitioning are the two steps required to build mini-batches
  • Powers of two are often chosen to be the mini-batch size, e.g., 16, 32, 64, 128.

1.3 - Momentum

Because mini-batch gradient descent makes a parameter update after seeing just a subset of examples, the direction of the update has some variance, and so the path taken by mini-batch gradient descent will "oscillate"(振荡) toward convergence(收敛). Using momentum can reduce these oscillations.

Momentum takes into account the past gradients to smooth out the update. We will store the 'direction' of the previous gradients in the variable \(v\). Formally, this will be the exponentially weighted average(指数加权平均) of the gradient on previous steps. You can also think of \(v\) as the "velocity" of a ball rolling downhill, building up speed (and momentum) according to the direction of the gradient/slope of the hill.

Figure 3: The red arrows shows the direction taken by one step of mini-batch gradient descent with momentum. The blue points show the direction of the gradient (with respect to the current mini-batch) on each step. Rather than just following the gradient, we let the gradient influence \(v\) and then take a step in the direction of \(v\) .

Exercise: Initialize the velocity. The velocity, \(v\), is a python dictionary that needs to be initialized with arrays of zeros. Its keys are the same as those in the grads dictionary, that is:

for \(l =1,...,L\):

v["dW" + str(l+1)] = ... #(numpy array of zeros with the same shape as parameters["W" + str(l+1)])
v["db" + str(l+1)] = ... #(numpy array of zeros with the same shape as parameters["b" + str(l+1)])

Note that the iterator l starts at 0 in the for loop while the first parameters are v["dW1"] and v["db1"] (that's a "one" on the superscript). This is why we are shifting l to l+1 in the for loop.

# GRADED FUNCTION: initialize_velocity

def initialize_velocity(parameters):
"""
Initializes the velocity as a python dictionary with:
- keys: "dW1", "db1", ..., "dWL", "dbL"
- values: numpy arrays of zeros of the same shape as the corresponding gradients/parameters.
Arguments:
parameters -- python dictionary containing your parameters.
parameters['W' + str(l)] = Wl
parameters['b' + str(l)] = bl Returns:
v -- python dictionary containing the current velocity.
v['dW' + str(l)] = velocity of dWl
v['db' + str(l)] = velocity of dbl
""" L = len(parameters) // 2 # number of layers in the neural networks
v = {} # Initialize velocity
for l in range(L):
### START CODE HERE ### (approx. 2 lines)
v['dW' + str(l+1)] = np.zeros(parameters['W'+str(l+1)].shape)
v['db' + str(l+1)] = np.zeros(parameters['b'+str(l+1)].shape)
### END CODE HERE ### return v
parameters = initialize_velocity_test_case()

v = initialize_velocity(parameters)
print("v[\"dW1\"] = " + str(v["dW1"]))
print("v[\"db1\"] = " + str(v["db1"]))
print("v[\"dW2\"] = " + str(v["dW2"]))
print("v[\"db2\"] = " + str(v["db2"]))

v["dW1"] = [[0. 0. 0.]

[0. 0. 0.]]

v["db1"] = [[0.]

[0.]]

v["dW2"] = [[0. 0. 0.]

[0. 0. 0.]

[0. 0. 0.]]

v["db2"] = [[0.]

[0.]

[0.]]

Exercise: Now, implement the parameters update with momentum. The momentum update rule is, for \(l = 1, ..., L\):

\[ \begin{cases}
v_{dW^{[l]}} = \beta v_{dW^{[l]}} + (1 - \beta) dW^{[l]} \\
W^{[l]} = W^{[l]} - \alpha v_{dW^{[l]}}
\end{cases}\tag{3}\]
\[\begin{cases}
v_{db^{[l]}} = \beta v_{db^{[l]}} + (1 - \beta) db^{[l]} \\
b^{[l]} = b^{[l]} - \alpha v_{db^{[l]}}
\end{cases}\tag{4}\]

where L is the number of layers, \(\beta\) is the momentum(动量) and \(\alpha\) is the learning rate. All parameters should be stored in the parameters dictionary. Note that the iterator l starts at 0 in the for loop while the first parameters are \(W^{[1]}\) and \(b^{[1]}\) (that's a "one" on the superscript). So you will need to shift l to l+1 when coding.

# GRADED FUNCTION: update_parameters_with_momentum

def update_parameters_with_momentum(parameters, grads, v, beta, learning_rate):
"""
Update parameters using Momentum Arguments:
parameters -- python dictionary containing your parameters:
parameters['W' + str(l)] = Wl
parameters['b' + str(l)] = bl
grads -- python dictionary containing your gradients for each parameters:
grads['dW' + str(l)] = dWl
grads['db' + str(l)] = dbl
v -- python dictionary containing the current velocity:
v['dW' + str(l)] = ...
v['db' + str(l)] = ...
beta -- the momentum hyperparameter, scalar
learning_rate -- the learning rate, scalar Returns:
parameters -- python dictionary containing your updated parameters
v -- python dictionary containing your updated velocities
""" L = len(parameters) // 2 # number of layers in the neural networks # Momentum update for each parameter
for l in range(L): ### START CODE HERE ### (approx. 4 lines)
# compute velocities
v['dW' + str(l+1)] = beta * v['dW' + str(l+1)] + (1-beta)*(grads['dW' + str(l+1)])
v['db' + str(l+1)] = beta * v['db' + str(l+1)] + (1-beta)*(grads['db' + str(l+1)]) # update parameters
parameters['W' + str(l+1)] = parameters['W' + str(l+1)] - learning_rate * v['dW' + str(l+1)]
parameters['b' + str(l+1)] = parameters['b' + str(l+1)] - learning_rate * v['db' + str(l+1)]
### END CODE HERE ### return parameters, v

测试:

parameters, grads, v = update_parameters_with_momentum_test_case()
parameters, v = update_parameters_with_momentum(parameters, grads, v, beta = 0.9, learning_rate = 0.01)
print("W1 = " + str(parameters["W1"]))
print("b1 = " + str(parameters["b1"]))
print("W2 = " + str(parameters["W2"]))
print("b2 = " + str(parameters["b2"]))
print("v[\"dW1\"] = " + str(v["dW1"]))
print("v[\"db1\"] = " + str(v["db1"]))
print("v[\"dW2\"] = " + str(v["dW2"]))
print("v[\"db2\"] = " + str(v["db2"]))

输出:

W1 = [[ 1.62544598 -0.61290114 -0.52907334]

[-1.07347112 0.86450677 -2.30085497]]

b1 = [[ 1.74493465]

[-0.76027113]]

W2 = [[ 0.31930698 -0.24990073 1.4627996 ]

[-2.05974396 -0.32173003 -0.38320915]

[ 1.13444069 -1.0998786 -0.1713109 ]]

b2 = [[-0.87809283]

[ 0.04055394]

[ 0.58207317]]

v["dW1"] = [[-0.11006192 0.11447237 0.09015907]

[ 0.05024943 0.09008559 -0.06837279]]

v["db1"] = [[-0.01228902]

[-0.09357694]]

v["dW2"] = [[-0.02678881 0.05303555 -0.06916608]

[-0.03967535 -0.06871727 -0.08452056]

[-0.06712461 -0.00126646 -0.11173103]]

v["db2"] = [[0.02344157]

[0.16598022]

[0.07420442]]

Note that:

  • The velocity is initialized with zeros. So the algorithm will take a few iterations to "build up" velocity and start to take bigger steps.
  • If \(\beta = 0\), then this just becomes standard gradient descent without momentum.

How do you choose \(\beta\)?

  • The larger the momentum \(\beta\) is, the smoother the update because the more we take the past gradients into account. But if \(\beta\) is too big, it could also smooth out the updates too much.
  • Common values for \(\beta\) range from 0.8 to 0.999. If you don't feel inclined to tune this, \(\beta = 0.9\) is often a reasonable default.
  • Tuning the optimal \(\beta\) for your model might need trying several values to see what works best in term of reducing the value of the cost function \(J\).

What you should remember:

  • Momentum takes past gradients into account to smooth out the steps of gradient descent. It can be applied with batch gradient descent, mini-batch gradient descent or stochastic gradient descent.
  • You have to tune a momentum hyperparameter \(\beta\) and a learning rate \(\alpha\).

1.4 - Adam

Adam is one of the most effective optimization algorithms for training neural networks. It combines ideas from RMSProp (described in lecture) and Momentum.

How does Adam work?

  1. It calculates an exponentially weighted average of past gradients, and stores it in variables \(v\) (before bias correction) and \(v^{corrected}\) (with bias correction).
  2. It calculates an exponentially weighted average of the squares of the past gradients, and stores it in variables \(s\) (before bias correction) and \(s^{corrected}\) (with bias correction).
  3. It updates parameters in a direction based on combining information from "1" and "2".

The update rule is, for \(l = 1, ..., L\):

\[\begin{cases}
v_{dW^{[l]}} = \beta_1 v_{dW^{[l]}} + (1 - \beta_1) \frac{\partial \mathcal{J} }{ \partial W^{[l]} } \\
v^{corrected}_{dW^{[l]}} = \frac{v_{dW^{[l]}}}{1 - (\beta_1)^t} \\
s_{dW^{[l]}} = \beta_2 s_{dW^{[l]}} + (1 - \beta_2) (\frac{\partial \mathcal{J} }{\partial W^{[l]} })^2 \\
s^{corrected}_{dW^{[l]}} = \frac{s_{dW^{[l]}}}{1 - (\beta_1)^t} \\
W^{[l]} = W^{[l]} - \alpha \frac{v^{corrected}_{dW^{[l]}}}{\sqrt{s^{corrected}_{dW^{[l]}}} + \varepsilon}
\end{cases}\]

where:

  • t counts the number of steps taken of Adam
  • L is the number of layers
  • \(\beta_1\) and \(\beta_2\) are hyperparameters that control the two exponentially weighted averages(指数加权平均).
  • \(\alpha\) is the learning rate
  • \(\varepsilon\) is a very small number to avoid dividing by zero

As usual, we will store all parameters in the parameters dictionary

# GRADED FUNCTION: initialize_adam

def initialize_adam(parameters) :
"""
Initializes v and s as two python dictionaries with:
- keys: "dW1", "db1", ..., "dWL", "dbL"
- values: numpy arrays of zeros of the same shape as the corresponding gradients/parameters. Arguments:
parameters -- python dictionary containing your parameters.
parameters["W" + str(l)] = Wl
parameters["b" + str(l)] = bl Returns:
v -- python dictionary that will contain the exponentially weighted average of the gradient.
v["dW" + str(l)] = ...
v["db" + str(l)] = ...
s -- python dictionary that will contain the exponentially weighted average of the squared gradient.
s["dW" + str(l)] = ...
s["db" + str(l)] = ... """ L = len(parameters) // 2 # number of layers in the neural networks
v = {}
s = {} # Initialize v, s. Input: "parameters". Outputs: "v, s".
for l in range(L):
### START CODE HERE ### (approx. 4 lines)
v['dW' + str(l+1)] = np.zeros(parameters['W' + str(l+1)].shape)
v['db' + str(l+1)] = np.zeros(parameters['b' + str(l+1)].shape)
s['dW' + str(l+1)] = np.zeros(parameters['b' + str(l+1)].shape)
s['db' + str(l+1)] = np.zeros(parameters['b' + str(l+1)].shape)
### END CODE HERE ### return v, s

测试:

parameters = initialize_adam_test_case()

v, s = initialize_adam(parameters)
print("v[\"dW1\"] = " + str(v["dW1"]))
print("v[\"db1\"] = " + str(v["db1"]))
print("v[\"dW2\"] = " + str(v["dW2"]))
print("v[\"db2\"] = " + str(v["db2"]))
print("s[\"dW1\"] = " + str(s["dW1"]))
print("s[\"db1\"] = " + str(s["db1"]))
print("s[\"dW2\"] = " + str(s["dW2"]))
print("s[\"db2\"] = " + str(s["db2"]))

输出:

v["dW1"] = [[0. 0. 0.]

[0. 0. 0.]]

v["db1"] = [[0.]

[0.]]

v["dW2"] = [[0. 0. 0.]

[0. 0. 0.]

[0. 0. 0.]]

v["db2"] = [[0.]

[0.]

[0.]]

s["dW1"] = [[0.]

[0.]]

s["db1"] = [[0.]

[0.]]

s["dW2"] = [[0.]

[0.]

[0.]]

s["db2"] = [[0.]

[0.]

[0.]]

Exercise: Now, implement the parameters update with Adam. Recall the general update rule is, for \(l = 1, ..., L\):

\[\begin{cases}
v_{W^{[l]}} = \beta_1 v_{W^{[l]}} + (1 - \beta_1) \frac{\partial J }{ \partial W^{[l]} } \\
v^{corrected}_{W^{[l]}} = \frac{v_{W^{[l]}}}{1 - (\beta_1)^t} \\
s_{W^{[l]}} = \beta_2 s_{W^{[l]}} + (1 - \beta_2) (\frac{\partial J }{\partial W^{[l]} })^2 \\
s^{corrected}_{W^{[l]}} = \frac{s_{W^{[l]}}}{1 - (\beta_2)^t} \\
W^{[l]} = W^{[l]} - \alpha \frac{v^{corrected}_{W^{[l]}}}{\sqrt{s^{corrected}_{W^{[l]}}}+\varepsilon}
\end{cases}\]

Note that the iterator l starts at 0 in the for loop while the first parameters are \(W^{[1]}\) and \(b^{[1]}\). You need to shift l to l+1 when coding.

# GRADED FUNCTION: update_parameters_with_adam

def update_parameters_with_adam(parameters, grads, v, s, t, learning_rate = 0.01,
beta1 = 0.9, beta2 = 0.999, epsilon = 1e-8):
"""
Update parameters using Adam Arguments:
parameters -- python dictionary containing your parameters:
parameters['W' + str(l)] = Wl
parameters['b' + str(l)] = bl
grads -- python dictionary containing your gradients for each parameters:
grads['dW' + str(l)] = dWl
grads['db' + str(l)] = dbl
v -- Adam variable, moving average of the first gradient, python dictionary
s -- Adam variable, moving average of the squared gradient, python dictionary
learning_rate -- the learning rate, scalar.
beta1 -- Exponential decay hyperparameter for the first moment estimates
beta2 -- Exponential decay hyperparameter for the second moment estimates
epsilon -- hyperparameter preventing division by zero in Adam updates Returns:
parameters -- python dictionary containing your updated parameters
v -- Adam variable, moving average of the first gradient, python dictionary
s -- Adam variable, moving average of the squared gradient, python dictionary
""" L = len(parameters) // 2 # number of layers in the neural networks
v_corrected = {} # Initializing first moment estimate, python dictionary
s_corrected = {} # Initializing second moment estimate, python dictionary # Perform Adam update on all parameters
for l in range(L):
# Moving average of the gradients. Inputs: "v, grads, beta1". Output: "v".
### START CODE HERE ### (approx. 2 lines)
v['dW' + str(l+1)] = beta1 * v['dW' + str(l+1)] + (1-beta1) * grads['dW' + str(l+1)]
v['db' + str(l+1)] = beta1 * v['db' + str(l+1)] + (1-beta1) * grads['db' + str(l+1)]
### END CODE HERE ### # Compute bias-corrected first moment estimate. Inputs: "v, beta1, t". Output: "v_corrected".
### START CODE HERE ### (approx. 2 lines)
v_corrected['dW' + str(l+1)] = v['dW' + str(l+1)] / (1 - np.power(beta1, t))
v_corrected['db' + str(l+1)] = v['db' + str(l+1)] / (1 - np.power(beta1, t)) ### END CODE HERE ### # Moving average of the squared gradients. Inputs: "s, grads, beta2". Output: "s".
### START CODE HERE ### (approx. 2 lines)
s['dW' + str(l+1)] = beta2 * s['dW' + str(l+1)] + (1-beta2) * np.power(grads['dW' + str(l+1)], 2)
s['db' + str(l+1)] = beta2 * s['db' + str(l+1)] + (1-beta2) * np.power(grads['db' + str(l+1)], 2)
### END CODE HERE ### # Compute bias-corrected second raw moment estimate. Inputs: "s, beta2, t". Output: "s_corrected".
### START CODE HERE ### (approx. 2 lines)
s_corrected['dW' + str(l+1)] = s['dW' + str(l+1)] / (1 - np.power(beta2, t))
s_corrected['db' + str(l+1)] = s['db' + str(l+1)] / (1 - np.power(beta2, t))
### END CODE HERE ### # Update parameters. Inputs: "parameters, learning_rate, v_corrected, s_corrected, epsilon". Output: "parameters".
### START CODE HERE ### (approx. 2 lines)
parameters['W' + str(l+1)] = parameters['W' + str(l+1)] - learning_rate * v_corrected['dW' + str(l+1)] / np.sqrt(s_corrected['dW' + str(l+1)] + epsilon)
parameters["b" + str(l+1)] = parameters['b' + str(l+1)] - learning_rate * v_corrected['db' + str(l+1)] / np.sqrt(s_corrected['db' + str(l+1)] + epsilon)
### END CODE HERE ### return parameters, v, s

测试:

parameters, grads, v, s = update_parameters_with_adam_test_case()
parameters, v, s = update_parameters_with_adam(parameters, grads, v, s, t = 2) print("W1 = " + str(parameters["W1"]))
print("b1 = " + str(parameters["b1"]))
print("W2 = " + str(parameters["W2"]))
print("b2 = " + str(parameters["b2"]))
print("v[\"dW1\"] = " + str(v["dW1"]))
print("v[\"db1\"] = " + str(v["db1"]))
print("v[\"dW2\"] = " + str(v["dW2"]))
print("v[\"db2\"] = " + str(v["db2"]))
print("s[\"dW1\"] = " + str(s["dW1"]))
print("s[\"db1\"] = " + str(s["db1"]))
print("s[\"dW2\"] = " + str(s["dW2"]))
print("s[\"db2\"] = " + str(s["db2"]))

2. Model with different optimization algorithms

Lets use the following "moons" dataset to test the different optimization methods. (The dataset is named "moons" because the data from each of the two classes looks a bit like a crescent-shaped moon.)

train_X, train_Y = load_dataset()

We have already implemented a 3-layer neural network. You will train it with:

  • Mini-batch Gradient Descent: it will call your function:

    • update_parameters_with_gd()
  • Mini-batch Momentum: it will call your functions:
    • initialize_velocity() and update_parameters_with_momentum()
  • Mini-batch Adam: it will call your functions:
    • initialize_adam() and update_parameters_with_adam()
def model(X, Y, layers_dims, optimizer, learning_rate = 0.0007, mini_batch_size = 64, beta = 0.9,
beta1 = 0.9, beta2 = 0.999, epsilon = 1e-8, num_epochs = 10000, print_cost = True):
"""
3-layer neural network model which can be run in different optimizer modes. Arguments:
X -- input data, of shape (2, number of examples)
Y -- true "label" vector (1 for blue dot / 0 for red dot), of shape (1, number of examples)
layers_dims -- python list, containing the size of each layer
learning_rate -- the learning rate, scalar.
mini_batch_size -- the size of a mini batch
beta -- Momentum hyperparameter
beta1 -- Exponential decay hyperparameter for the past gradients estimates
beta2 -- Exponential decay hyperparameter for the past squared gradients estimates
epsilon -- hyperparameter preventing division by zero in Adam updates
num_epochs -- number of epochs
print_cost -- True to print the cost every 1000 epochs Returns:
parameters -- python dictionary containing your updated parameters
""" L = len(layers_dims) # number of layers in the neural networks
costs = [] # to keep track of the cost
t = 0 # initializing the counter required for Adam update
seed = 10 # For grading purposes, so that your "random" minibatches are the same as ours # Initialize parameters
parameters = initialize_parameters(layers_dims) # Initialize the optimizer
if optimizer == "gd":
pass # no initialization required for gradient descent
elif optimizer == "momentum":
v = initialize_velocity(parameters)
elif optimizer == "adam":
v, s = initialize_adam(parameters) # Optimization loop
for i in range(num_epochs): # Define the random minibatches. We increment the seed to reshuffle differently the dataset after each epoch
seed = seed + 1
minibatches = random_mini_batches(X, Y, mini_batch_size, seed) # [(x^{1},y^{1}), ......(x^{t}), y^{t}] for minibatch in minibatches:
# Select a minibatch
(minibatch_X, minibatch_Y) = minibatch # Forward propagation
a3, caches = forward_propagation(minibatch_X, parameters) # Compute cost
cost = compute_cost(a3, minibatch_Y) # Backward propagation
grads = backward_propagation(minibatch_X, minibatch_Y, caches) # Update parameters
if optimizer == "gd":
parameters = update_parameters_with_gd(parameters, grads, learning_rate)
elif optimizer == "momentum":
parameters, v = update_parameters_with_momentum(parameters, grads, v, beta, learning_rate)
elif optimizer == "adam":
t = t + 1 # Adam counter
parameters, v, s = update_parameters_with_adam(parameters, grads, v, s,
t, learning_rate, beta1, beta2, epsilon) # Print the cost every 1000 epoch
if print_cost and i % 1000 == 0:
print ("Cost after epoch %i: %f" %(i, cost))
if print_cost and i % 100 == 0:
costs.append(cost) # plot the cost
plt.plot(costs)
plt.ylabel('cost')
plt.xlabel('epochs (per 100)')
plt.title("Learning rate = " + str(learning_rate))
plt.show() return parameters

You will now run this 3 layer neural network with each of the 3 optimization methods.

2.1 - Mini-batch Gradient descent

Run the following code to see how the model does with mini-batch gradient descent.

# train 3-layer model
layers_dims = [train_X.shape[0], 5, 2, 1]
parameters = model(train_X, train_Y, layers_dims, optimizer = "gd") # Predict
predictions = predict(train_X, train_Y, parameters) # Plot decision boundary
plt.title("Model with Gradient Descent optimization")
axes = plt.gca()
axes.set_xlim([-1.5,2.5])
axes.set_ylim([-1,1.5])
plot_decision_boundary(lambda x: predict_dec(parameters, x.T), train_X, train_Y)

输出:

Cost after epoch 0: 0.690736

Cost after epoch 1000: 0.685273

Cost after epoch 2000: 0.647072

Cost after epoch 3000: 0.619525

Cost after epoch 4000: 0.576584

Cost after epoch 5000: 0.607243

Cost after epoch 6000: 0.529403

Cost after epoch 7000: 0.460768

Cost after epoch 8000: 0.465586

Cost after epoch 9000: 0.464518

Accuracy: 0.7966666666666666

2.2 - Mini-batch gradient descent with momentum

Run the following code to see how the model does with momentum. Because this example is relatively simple, the gains from using momemtum are small; but for more complex problems you might see bigger gains.

# train 3-layer model
layers_dims = [train_X.shape[0], 5, 2, 1]
parameters = model(train_X, train_Y, layers_dims, beta = 0.9, optimizer = "momentum") # Predict
predictions = predict(train_X, train_Y, parameters) # Plot decision boundary
plt.title("Model with Momentum optimization")
axes = plt.gca()
axes.set_xlim([-1.5,2.5])
axes.set_ylim([-1,1.5])
plot_decision_boundary(lambda x: predict_dec(parameters, x.T), train_X, train_Y)

Cost after epoch 0: 0.690741

Cost after epoch 1000: 0.685341

Cost after epoch 2000: 0.647145

Cost after epoch 3000: 0.619594

Cost after epoch 4000: 0.576665

Cost after epoch 5000: 0.607324

Cost after epoch 6000: 0.529476

Cost after epoch 7000: 0.460936

Cost after epoch 8000: 0.465780

Cost after epoch 9000: 0.464740

Accuracy: 0.7966666666666666

2.3 - Mini-batch with Adam mode

Run the following code to see how the model does with Adam.

# train 3-layer model
layers_dims = [train_X.shape[0], 5, 2, 1]
parameters = model(train_X, train_Y, layers_dims, optimizer = "adam") # Predict
predictions = predict(train_X, train_Y, parameters) # Plot decision boundary
plt.title("Model with Adam optimization")
axes = plt.gca()
axes.set_xlim([-1.5,2.5])
axes.set_ylim([-1,1.5])
plot_decision_boundary(lambda x: predict_dec(parameters, x.T), train_X, train_Y)

Cost after epoch 0: 0.690552

Cost after epoch 1000: 0.185501

Cost after epoch 2000: 0.150830

Cost after epoch 3000: 0.074454

Cost after epoch 4000: 0.125959

Cost after epoch 5000: 0.104344

Cost after epoch 6000: 0.100676

Cost after epoch 7000: 0.031652

Cost after epoch 8000: 0.111973

Cost after epoch 9000: 0.197940

Accuracy: 0.94

2.4 - Summary

**optimization method** **accuracy** **cost shape**
Gradient descent 79.7% oscillations
Momentum 79.7% oscillations
Adam 94% smoother

Adam on the other hand, clearly outperforms mini-batch gradient descent and Momentum. Adam converges a lot faster.

Adam 包含的优点:

  • 相对较低的内存需求 (though higher than gradient descent and gradient descent with momentum)
  • 即使很少的调试超参数,也可以工作的很好 (except \(\alpha\))

改善深层神经网络-week2编程题(Optimization Methods)的更多相关文章

  1. 改善深层神经网络-week1编程题(Initializaion)

    Initialization 如何选择初始化方式,不同的初始化会导致不同的结果 好的初始化方式: 加速梯度下降的收敛(Speed up the convergence of gradient desc ...

  2. 改善深层神经网络-week1编程题(Regularization)

    Regularization Deep Learning models have so much flexibility and capacity that overfitting can be a ...

  3. 改善深层神经网络-week1编程题(GradientChecking)

    1. Gradient Checking 你被要求搭建一个Deep Learning model来检测欺诈,每当有人付款,你想知道是否该支付可能是欺诈,例如该用户的账户可能已经被黑客掉. 但是,反向传 ...

  4. 改善深层神经网络-week3编程题(Tensorflow 实现手势识别 )

    TensorFlow Tutorial Initialize variables Start your own session Train algorithms Implement a Neural ...

  5. deeplearning.ai 改善深层神经网络 week2 优化算法 听课笔记

    这一周的主题是优化算法. 1.  Mini-batch: 上一门课讨论的向量化的目的是去掉for循环加速优化计算,X = [x(1) x(2) x(3) ... x(m)],X的每一个列向量x(i)是 ...

  6. deeplearning.ai 改善深层神经网络 week2 优化算法

    这一周的主题是优化算法. 1.  Mini-batch: 上一门课讨论的向量化的目的是去掉for循环加速优化计算,X = [x(1) x(2) x(3) ... x(m)],X的每一个列向量x(i)是 ...

  7. 改善深层神经网络_优化算法_mini-batch梯度下降、指数加权平均、动量梯度下降、RMSprop、Adam优化、学习率衰减

    1.mini-batch梯度下降 在前面学习向量化时,知道了可以将训练样本横向堆叠,形成一个输入矩阵和对应的输出矩阵: 当数据量不是太大时,这样做当然会充分利用向量化的优点,一次训练中就可以将所有训练 ...

  8. [DeeplearningAI笔记]改善深层神经网络_深度学习的实用层面1.10_1.12/梯度消失/梯度爆炸/权重初始化

    觉得有用的话,欢迎一起讨论相互学习~Follow Me 1.10 梯度消失和梯度爆炸 当训练神经网络,尤其是深度神经网络时,经常会出现的问题是梯度消失或者梯度爆炸,也就是说当你训练深度网络时,导数或坡 ...

  9. DeepLearning.ai学习笔记(二)改善深层神经网络:超参数调试、正则化以及优化--Week2优化算法

    1. Mini-batch梯度下降法 介绍 假设我们的数据量非常多,达到了500万以上,那么此时如果按照传统的梯度下降算法,那么训练模型所花费的时间将非常巨大,所以我们对数据做如下处理: 如图所示,我 ...

随机推荐

  1. vue七种实现组建通信的方法

    目录 组件通信 1.props 父组件--->子组件通信 2.$emit 子组件--->父组件传递 $emit与props结合 兄弟组件传值 3.bus(事件总线) 兄弟组件通信 4.$p ...

  2. HTML一小时入门,半天掌握

    还没有写完,后续持续更新 首先来熟悉一下html的基本结构 <!DOCTYPE HTML> <html> <head> <meta charset=" ...

  3. TypeScript 中函数的理解?与 JavaScript 函数的区别?

    一.是什么 函数是JavaScript 应用程序的基础,帮助我们实现抽象层.模拟类.信息隐藏和模块 在TypeScript 里,虽然已经支持类.命名空间和模块,但函数仍然是主要定义行为的方式,Type ...

  4. Django项目中的模板继承

    1. 定义一个基础的页面HTML文件base.html <!DOCTYPE html> <html lang="en"> <head> < ...

  5. openswan IPSec专栏目录锦集

    为了方便查阅现有的文章,特准备一个目录页供后续查询使用 专栏序言 1. 基础知识 openswan任务调度基础知识之信号 2. openswan环境搭建 openswan框架和编译时说明 opensw ...

  6. 解析Prometheus PromQL

    解析PromQL 目前对Prometheus 的promQL 的解析文章比较少,且Prometheus官方也没有提供一个公共的库来对齐进行解析.下面实现对promQL的解析,并实现注入label功能. ...

  7. Excel中怎么快速选中区域

    连续的表格选定 一张表格中会有不同的部分,若想选择某一个区域的数据的时候我们可以使用快捷键Ctrl+A,这是需要先选中第一个单元格,接着点击Ctrl+A即可选中连续的单元格.       汇总后需要汇 ...

  8. djang2.1教育平台02

    在次申明,之所以重做这个资料是因为原幕课教程漏洞太多,新手根本没有办法正常照些学习,我凭着老男孩python 课程基础,重做这个教程 ,更改版本为当前最新版本,为了方法以后的人学习,并不是照着原文照  ...

  9. 一起学习PHP中GD库的使用(一)

    又到了一个大家非常熟悉的库了,对于图像图形的处理来说,GD 库是 PHPer 们绕不过去的一道坎.从很早很早的 CMS 或者 Discuz 时代,各类开源软件在安装的时候就会明确地指出 GD 库是它们 ...

  10. PHP的zip压缩工具扩展包学习

    总算到了 PHP 的拿手好戏上场了,前面我们学习过 Bzip2 . LZF . Phar 和 rar 这些压缩相关扩展在 PHP 中的使用,不过它们要么是太冷门,要么就是很多功能不支持.而 Zip 则 ...