BBN: Bilateral-Branch Network with Cumulative Learning for Long-Tailed Visual Recognition

Zhu B., Cui Q., Wei X. and Chen Z. BBN: Bilateral-Branch Network with Cumulative Learning for Long-Tailed Visual Recognition. CVPR 2020.

数据的长短尾效应是当前比较棘手的问题, 本文提出用分支网络来应对这一问题, 并取得了不错的结果.

主要内容

这篇文章的创新点是用两个分支来适应数据的不平衡.

如图所示, 上面的分支用于标准的训练, 而下面的分支则采用适合不平衡数据的训练方式: 即一般的训练是均匀的采样分布, 而非标准训练采用的是一个非均匀的依赖于样本分布的.

通过均匀采样得到\((x_c, y_c)\), 通过非均匀采样得到\((x_r, y_r)\), 分别喂入上下分支得到特征表示\(f_c\)和\(f_r\).

注意到, 上下两个分支是共享部分参数的, 作者实际选择的是残差网络, 设定为除了最后一个residual block外均是共享的.

根据\(f_c\)和\(f_r\)进一步得到

\[z = \alpha W^T_c f_c + (1-\alpha) W_r^T f_r,
\]

即\([z_1, z_2,\cdots, z_C]^T\).

得到相应的概率向量

\[\hat{p}_i = \frac{e^{z_i}}{\sum_{i=1}^{C}e^{z_j}}.
\]

最后通过下列损失函数进行训练

\[\mathcal{L} = \alpha E(\hat{p}, y_c) + (1-\alpha)E(\hat{p}, y_r).
\]

实际上, \(\alpha\)就是一个调整标准训练和处理不平衡数据的权重.

采样方式

对于非均匀分布, 作者采取了如下方式构造采样分布, 假设每个类的样本数目为\(N_i, i=1,2,\ldots,C\). 则采样比例为

\[P_i = \frac{w_i}{\sum_{j=1}^C w_j},
\]

其中\(w_i=\frac{1}{N_i}\).

权重\(\alpha\)

作者采用的是这样的一种方案

\[\alpha = 1 - (\frac{T}{T_{max}})^2,
\]

其中\(T\)为当前的epoch, \(T_{max}\)为总的训练epochs.

在实际测试中, 作者也尝试了一些别的方案, 不过别的方案不如此方案理想.

直观上的解释就是, 训练过程会有普通的训练渐渐偏向re-balance的训练.

Inference phase

在推断过程中, 设定\(\alpha=0.5\).

代码

原文代码

BBN: Bilateral-Branch Network with Cumulative Learning for Long-Tailed Visual Recognition的更多相关文章

  1. 《Neural Network and Deep Learning》_chapter4

    <Neural Network and Deep Learning>_chapter4: A visual proof that neural nets can compute any f ...

  2. neural network and deep learning笔记(1)

    neural network and deep learning 这本书看了陆陆续续看了好几遍了,但每次都会有不一样的收获. DL领域的paper日新月异.每天都会有非常多新的idea出来,我想.深入 ...

  3. 树卷积神经网络Tree-CNN: A Deep Convolutional Neural Network for Lifelong Learning

    树卷积神经网络Tree-CNN: A Deep Convolutional Neural Network for Lifelong Learning 2018-04-17 08:32:39 看_这是一 ...

  4. 论文笔记:Learning Attribute-Specific Representations for Visual Tracking

    Learning Attribute-Specific Representations for Visual Tracking AAAI-2019 Paper:http://faculty.ucmer ...

  5. [论文阅读] A Discriminative Feature Learning Approach for Deep Face Recognition (Center Loss)

    原文: A Discriminative Feature Learning Approach for Deep Face Recognition 用于人脸识别的center loss. 1)同时学习每 ...

  6. Neural Network Programming - Deep Learning with PyTorch with deeplizard.

    PyTorch Prerequisites - Syllabus for Neural Network Programming Series PyTorch先决条件 - 神经网络编程系列教学大纲 每个 ...

  7. Learning to Compare: Relation Network for Few-Shot Learning 论文笔记

    主要原理: 和Siamese Neural Networks一样,将分类问题转换成两个输入的相似性问题. 和Siamese Neural Networks不同的是: Relation Network中 ...

  8. 【转载】论文笔记系列-Tree-CNN: A Deep Convolutional Neural Network for Lifelong Learning

    一. 引出主题¶ 深度学习领域一直存在一个比较严重的问题——“灾难性遗忘”,即一旦使用新的数据集去训练已有的模型,该模型将会失去对原数据集识别的能力.为解决这一问题,本文提出了树卷积神经网络,通过先将 ...

  9. Neural Network Programming - Deep Learning with PyTorch - YouTube

    百度云链接: 链接:https://pan.baidu.com/s/1xU-CxXGCvV6o5Sksryj3fA 提取码:gawn

随机推荐

  1. Hadoop入门 运行环境搭建

    模板虚拟机 目录 模板虚拟机 1 硬件 2 操作系统 3 IP地址和主机名称 vm windows10 Hadoop100服务器 远程访问工具 其他准备 克隆虚拟机 克隆 修改主机名/ip 安装jdk ...

  2. 学习Java 2021/10/7

    java重写Override 重载Overload 重写是子类对父类的允许访问的方法的实现过程进行重新编写,返回值和形参都不能改变.即外壳不变,核心重写 重写规则: 参数列表与被重写方法的参数列表必须 ...

  3. day30线程(Threads)

    day30线程(Threads) 1.开启线程 一.什么是线程: 1.进程是资源分配的最小单位,线程是CPU调度的最小单位.每一个进程中至少有一个线程. 2.主进程中的线程称为主线程,其他开启的线程称 ...

  4. 零基础学习java------25--------jdbc

    jdbc开发步骤图 以下要用到的products表 一. JDBC简介 补充    JDBC本质:其实是官方(sun公司)定义的一套操作所有关系型数据库的规则,即接口,各个数据库厂商趋势线这个接口,提 ...

  5. iBatis查询时报"列名无效"或"找不到栏位名称"无列名的错误原因及解决方法

    iBatis会自动缓存每条查询语句的列名映射,对于动态查询字段或分页查询等queryForPage, queryForList,就可能产生"列名无效".rs.getObject(o ...

  6. js调用高德地图API获取地理信息进行定位

    <script type="text/javascript" src="http://webapi.amap.com/maps?v=1.3&key=(需要自 ...

  7. 【HarmonyOS】【Json解析】ZSON 与 HiJson 使用

    HiLog配置 为了方便调试,查看,先设置好Hilog public static final HiLogLabel loglabel = new HiLogLabel(HiLog.LOG_APP,0 ...

  8. Python matplotlib绘制圆环图

    一.语法和参数简介 plt.pie(x2,labels=labels, autopct = '%0.2f%%', shadow= False, startangle =0,labeldistance= ...

  9. 前端浅谈-协议相关(http/https)

    当DNS工作完之后得到了一个网址 https//192.168.1.255/index.html 这个并不符合标准的请求路径.接下来就是https的功能了.讲https前先讲讲它的前身http协议 H ...

  10. IOS开发入门教程-总结篇-写给狂热的编程爱好者们

    程序发轻狂,代码阑珊,苹果开发安卓狂!--写给狂热的编程爱好者们 写在前面的话 学习iOS应用程序开发已有一段时间,最近稍微闲下来了,正好也想记录一下前阶段的整个学习过程.索性就从最基础的开始,一步一 ...