A Deep Neural Network’s Loss Surface Contains Every Low-dimensional Pattern
A Deep Neural Network’s Loss Surface Contains Every Low-dimensional Pattern
概
作者关于Loss Surface的情况做了一个理论分析, 即证明足够大的神经网络能够逼近所有的低维损失patterns.
相关工作
文中多处用到了universal approximators.
主要内容
引理1
\(\mathcal{F}\)定义了universal approximators, 即同一定义域内的任意函数\(f\)都能用\(\mathcal{F}\)中的元素来逼近. \(\sigma(f_\theta)\)则是将值域进行了扩展, 而这并不影响其universal approximator的性质.
定理1
证明:
假设神经网络的第一层的权重矩阵为\(\theta_W \in \mathbb{R}^{d \times k}\), 偏置向量为\(\theta_b\), 神经网络剩余的参数为\(\theta'\), 记\(\theta = \{\theta_W, \theta_b, \theta'\}\). 则网络的输出为:
f_{\theta}(x) = f_{\{\theta_W, \theta_b, \theta' \}}(x) = g_{\theta'}(\langle x, \theta_W \rangle + \theta_b),
\]
\(N\)个样本点的损失就是
L(\theta) = \frac{1}{N} \sum_i \ell (f_{\theta}(x_i), y_i).
\]
现在假设目标\(z\)维loss pattern为(应当为连续函数)
\mathcal{T}(h_1,h_2,\ldots, h_z):[0,1]^z \rightarrow [0, 1].
\]
我们现在, 希望将网络中的某些参数视作变量\(h_1,\ldots,h_z\), 得以逼近\(\mathcal{T}\).
令\(\theta_W=0\) (这样网络的输出与\(x\)无关), \(\theta_b=[h_1,\ldots, h_z,0,\ldots,0]\)(这隐含了\(k \ge z\)的假设).
根据universal approximation theorem我们可以使得\(q_{\theta'}\)成为approximator. 相对应的
定义\(\sigma(p):=\frac{1}{N}\sum_i \ell(q_{\theta'}(h_1,\ldots, h_z),y_i)\), 只需要\(\sigma\)满足引理1中的条件, 就存在\(\theta_{\epsilon}(\mathcal{T})\), 使得\(L(h_1,h_2,\ldots, h_z, \theta_{\epsilon}(\mathcal{T}))\)逼近\(\mathcal{T}\).
定理2
说实话, 这个定理没怎么看懂, 看证明, 这个global minimum似乎指的是\(\mathcal{T}(h)\)的最小值.
证明:
\(\theta_b\)不变, \(\theta_W\)只令前\(z\)列为0, 则第一层(未经激活)的输出为\((h_1,\ldots,h_z,\phi(x))\), 于是
令\(h^* := \arg \min_{h \in [0,1]^z \mathcal{T}(h)}\), 并假设\(L^*=\mathcal{T}(h^*)\)(?). 假设损失\(\ell_i(p) = \ell (p, y_i)\), 可逆且逆函数光滑(这个性质对于损失函数来讲很普遍).
在这个假设下, 我们有
q_{\theta'}(h, \phi(x_i)) \approx \ell_i^{-1}(\mathcal{T}(h)),
\]
文中说这个也是因为逼近定理, 固定\(i\)的时候, 这个自然是成立的, 如何能保证对于所有的\(i=1,\ldots,n\)成立, 我有一个思路.
假设二者的距离(\(+\infty\)范数)为\(\epsilon_i^h \in \mathbb{R}\), 则
所以
且此时\(|L(h^*)-\mathcal{T}(h^*)|<\epsilon\).
我比较关心的问题是, 能否选择合适的loss patterns (相当于选择合适的空间) 使得网络在某些性能上比较好(比方防过拟合, 最优性).
A Deep Neural Network’s Loss Surface Contains Every Low-dimensional Pattern的更多相关文章
- 深度神经网络如何看待你,论自拍What a Deep Neural Network thinks about your #selfie
Convolutional Neural Networks are great: they recognize things, places and people in your personal p ...
- XiangBai——【AAAI2017】TextBoxes_A Fast Text Detector with a Single Deep Neural Network
XiangBai--[AAAI2017]TextBoxes:A Fast Text Detector with a Single Deep Neural Network 目录 作者和相关链接 方法概括 ...
- 论文阅读(XiangBai——【AAAI2017】TextBoxes_A Fast Text Detector with a Single Deep Neural Network)
XiangBai——[AAAI2017]TextBoxes:A Fast Text Detector with a Single Deep Neural Network 目录 作者和相关链接 方法概括 ...
- Neural Networks and Deep Learning(week4)Deep Neural Network - Application(图像分类)
Deep Neural Network for Image Classification: Application 预先实现的代码,保存在本地 dnn_app_utils_v3.py import n ...
- Neural Networks and Deep Learning(week4)Building your Deep Neural Network: Step by Step
Building your Deep Neural Network: Step by Step 你将使用下面函数来构建一个深层神经网络来实现图像分类. 使用像relu这的非线性单元来改进你的模型 构建 ...
- 课程一(Neural Networks and Deep Learning),第四周(Deep Neural Networks)——2.Programming Assignments: Building your Deep Neural Network: Step by Step
Building your Deep Neural Network: Step by Step Welcome to your third programming exercise of the de ...
- What are the advantages of ReLU over sigmoid function in deep neural network?
The state of the art of non-linearity is to use ReLU instead of sigmoid function in deep neural netw ...
- 论文笔记之:Decoupled Deep Neural Network for Semi-supervised Semantic Segmentation
Decoupled Deep Neural Network for Semi-supervised Semantic Segmentation xx
- Deep Learning: Assuming a deep neural network is properly regulated, can adding more layers actually make the performance degrade?
Deep Learning: Assuming a deep neural network is properly regulated, can adding more layers actually ...
随机推荐
- 【AWS】【TroubleShooting】EC2实例无法使用SSH远程登陆(EC2 failure for SSH connection)
1. Login AWS web console and check the EC2 instance.
- ORACLE CACHE BUFFER CHAINS原理
原理图如下: 一个cache buffer chains 管理多个hash bucket,受隐含参数:_db_block_hash_buckets(控制管理几个hash bucket)
- OpenStack之三: 安装MySQL,rabbitmq, memcached
官网地址:https://docs.openstack.org/install-guide/environment-sql-database-rdo.html #:安装mysql [root@mysq ...
- Markdown随时记录
Markdown学习 推荐文本编译器 Typora 标题(支持六级) 一级标题:# + 空格 + 内容 二级标题:## + 空格 + 内容 三级标题:### + 空格 + 内容 . . . 字体 粗体 ...
- 强化学习实战 | 表格型Q-Learning玩井字棋(四)游戏时间
在 强化学习实战 | 表格型Q-Learning玩井字棋(三)优化,优化 中,我们经过优化和训练,得到了一个还不错的Q表格,这一节我们将用pygame实现一个有人机对战,机机对战和作弊功能的井字棋游戏 ...
- Linux内核配置-ARP系列
all为所有,defalut为默认,其他为接口自己的 如果接口没填写,将会把defalut的值放接口上,实际生效的为all和接口中参数值较大的那个 #arp_ignore arp_ignore的参数含 ...
- Containing ViewControllers
Containing ViewControllers 转自:https://www.cocoanetics.com/2012/04/containing-viewcontrollers/ For a ...
- Samba 源码解析之内存管理
由于工作需要想研究下Samba的源码,下载后发现目录结构还是很清晰的.一般大家可能会对source3和source4文件夹比较疑惑.这两个文件夹针对的是Samba主版本号,所以你可以暂时先看一个.这里 ...
- [源码解析] PyTorch 分布式(17) --- 结合DDP和分布式 RPC 框架
[源码解析] PyTorch 分布式(17) --- 结合DDP和分布式 RPC 框架 目录 [源码解析] PyTorch 分布式(17) --- 结合DDP和分布式 RPC 框架 0x00 摘要 0 ...
- ansible自定义模块
参考官网:http://www.ansible.com.cn/docs/developing_modules.html#tutorial 阅读 ansible 附带的模块(上面链接)是学习如何编写模块 ...