A Deep Neural Network’s Loss Surface Contains Every Low-dimensional Pattern

作者关于Loss Surface的情况做了一个理论分析, 即证明足够大的神经网络能够逼近所有的低维损失patterns.

相关工作

loss landscape 的提及.

文中多处用到了universal approximators.

主要内容

引理1

\(\mathcal{F}\)定义了universal approximators, 即同一定义域内的任意函数\(f\)都能用\(\mathcal{F}\)中的元素来逼近. \(\sigma(f_\theta)\)则是将值域进行了扩展, 而这并不影响其universal approximator的性质.

定理1

证明:

假设神经网络的第一层的权重矩阵为\(\theta_W \in \mathbb{R}^{d \times k}\), 偏置向量为\(\theta_b\), 神经网络剩余的参数为\(\theta'\), 记\(\theta = \{\theta_W, \theta_b, \theta'\}\). 则网络的输出为:

\[\tag{1}
f_{\theta}(x) = f_{\{\theta_W, \theta_b, \theta' \}}(x) = g_{\theta'}(\langle x, \theta_W \rangle + \theta_b),
\]

\(N\)个样本点的损失就是

\[\tag{2}
L(\theta) = \frac{1}{N} \sum_i \ell (f_{\theta}(x_i), y_i).
\]

现在假设目标\(z\)维loss pattern为(应当为连续函数)

\[\tag{3}
\mathcal{T}(h_1,h_2,\ldots, h_z):[0,1]^z \rightarrow [0, 1].
\]

我们现在, 希望将网络中的某些参数视作变量\(h_1,\ldots,h_z\), 得以逼近\(\mathcal{T}\).

令\(\theta_W=0\) (这样网络的输出与\(x\)无关), \(\theta_b=[h_1,\ldots, h_z,0,\ldots,0]\)(这隐含了\(k \ge z\)的假设).



根据universal approximation theorem我们可以使得\(q_{\theta'}\)成为approximator. 相对应的

定义\(\sigma(p):=\frac{1}{N}\sum_i \ell(q_{\theta'}(h_1,\ldots, h_z),y_i)\), 只需要\(\sigma\)满足引理1中的条件, 就存在\(\theta_{\epsilon}(\mathcal{T})\), 使得\(L(h_1,h_2,\ldots, h_z, \theta_{\epsilon}(\mathcal{T}))\)逼近\(\mathcal{T}\).

定理2

说实话, 这个定理没怎么看懂, 看证明, 这个global minimum似乎指的是\(\mathcal{T}(h)\)的最小值.

证明:

\(\theta_b\)不变, \(\theta_W\)只令前\(z\)列为0, 则第一层(未经激活)的输出为\((h_1,\ldots,h_z,\phi(x))\), 于是

令\(h^* := \arg \min_{h \in [0,1]^z \mathcal{T}(h)}\), 并假设\(L^*=\mathcal{T}(h^*)\)(?). 假设损失\(\ell_i(p) = \ell (p, y_i)\), 可逆且逆函数光滑(这个性质对于损失函数来讲很普遍).

在这个假设下, 我们有

\[\tag{14}
q_{\theta'}(h, \phi(x_i)) \approx \ell_i^{-1}(\mathcal{T}(h)),
\]

文中说这个也是因为逼近定理, 固定\(i\)的时候, 这个自然是成立的, 如何能保证对于所有的\(i=1,\ldots,n\)成立, 我有一个思路.

假设二者的距离(\(+\infty\)范数)为\(\epsilon_i^h \in \mathbb{R}\), 则

所以



且此时\(|L(h^*)-\mathcal{T}(h^*)|<\epsilon\).

我比较关心的问题是, 能否选择合适的loss patterns (相当于选择合适的空间) 使得网络在某些性能上比较好(比方防过拟合, 最优性).

A Deep Neural Network’s Loss Surface Contains Every Low-dimensional Pattern的更多相关文章

  1. 深度神经网络如何看待你,论自拍What a Deep Neural Network thinks about your #selfie

    Convolutional Neural Networks are great: they recognize things, places and people in your personal p ...

  2. XiangBai——【AAAI2017】TextBoxes_A Fast Text Detector with a Single Deep Neural Network

    XiangBai--[AAAI2017]TextBoxes:A Fast Text Detector with a Single Deep Neural Network 目录 作者和相关链接 方法概括 ...

  3. 论文阅读(XiangBai——【AAAI2017】TextBoxes_A Fast Text Detector with a Single Deep Neural Network)

    XiangBai——[AAAI2017]TextBoxes:A Fast Text Detector with a Single Deep Neural Network 目录 作者和相关链接 方法概括 ...

  4. Neural Networks and Deep Learning(week4)Deep Neural Network - Application(图像分类)

    Deep Neural Network for Image Classification: Application 预先实现的代码,保存在本地 dnn_app_utils_v3.py import n ...

  5. Neural Networks and Deep Learning(week4)Building your Deep Neural Network: Step by Step

    Building your Deep Neural Network: Step by Step 你将使用下面函数来构建一个深层神经网络来实现图像分类. 使用像relu这的非线性单元来改进你的模型 构建 ...

  6. 课程一(Neural Networks and Deep Learning),第四周(Deep Neural Networks)——2.Programming Assignments: Building your Deep Neural Network: Step by Step

    Building your Deep Neural Network: Step by Step Welcome to your third programming exercise of the de ...

  7. What are the advantages of ReLU over sigmoid function in deep neural network?

    The state of the art of non-linearity is to use ReLU instead of sigmoid function in deep neural netw ...

  8. 论文笔记之:Decoupled Deep Neural Network for Semi-supervised Semantic Segmentation

    Decoupled Deep Neural Network for Semi-supervised Semantic Segmentation xx

  9. Deep Learning: Assuming a deep neural network is properly regulated, can adding more layers actually make the performance degrade?

    Deep Learning: Assuming a deep neural network is properly regulated, can adding more layers actually ...

随机推荐

  1. day07 MySQL索引事务

    day07 MySQL索引事务 昨日内容回顾 pymysql模块 # 链接数据库都是使用这个模块的 # 创建链接 import pymysql conn = pymysql.connect( host ...

  2. day20 系统优化

    day20 系统优化 yum源的优化 yum源的优化: 自建yum仓库 使用一个较为稳定的仓库 # 安装华为的Base源 或者使用清华的源也可以 wget -O /etc/yum.repos.d/Ce ...

  3. 【2021赣网杯web(一)】gwb-web-easypop

    源码分析 <?php error_reporting(0); highlight_file(__FILE__); $pwd=getcwd(); class func { public $mod1 ...

  4. 为什么CTR预估使用AUC来评估模型?

    ctr预估简单的解释就是预测用户的点击item的概率.为什么一个回归的问题需要使用分类的方法来评估,这真是一个好问题,尝试从下面几个关键问题去回答. 1.ctr预估是特殊的回归问题 ctr预估的目标函 ...

  5. ViewStub应用

    在开发应用程序的时候,会遇到这样的情况,在运行时动态的根据条件来决定显示哪个View或哪个布局,可以把可能用到的View都写在上面,先把他们的可见性设置为View.GONE,然后在代码中动态的更改它的 ...

  6. 错误: 找不到或无法加载主类(IDEA中启动spring boot项目)

    版权声明:本文为博主原创文章,如果转载请给出原文链接:http://www.jufanshare.com/content/142.html 提示:需要对IDEA编辑工具使用熟悉 出现一个问题,就是sp ...

  7. GET传参数方式

    controller:/getDetail/{id} /getDetail?id1234567 /getDetail?id=id1234567

  8. jdk1.8帮助文档中文可搜索

    jdk1.8帮助文档中文可搜索 链接:https://pan.baidu.com/s/11beeZLpEIhciOd14WkCpdg 提取码:t4lw

  9. gogs报错解决合集

    目录 一.在组织中添加成员,一直显示普通用户 一.在组织中添加成员,一直显示普通用户 组织是公司,团队是公司中的不同队伍.例如A团队设置为加入就有管理员权限,那加入就有管理员. 但在组织成员那一栏中加 ...

  10. 配置文件管理维护到gitlab上

    一.简介 在日常维护服务器中,会修改配置文件或者相应脚本,在修改前要对文件进行按照日期备份,这样会很麻烦,频繁修改的时候也会懒得去备份多个. 维护脚本分为服务端和客户端,服务端监听端口,接收客户端的采 ...