1048 - Conquering Keokradong
Time Limit: 1 second(s) Memory Limit: 32 MB

This winter we are going on a trip to Bandorban. The main target is to climb up to the top of Keokradong. So, we will use a trail. The trail is a continuous marked footpath that goes from Bandorban to Keokradong.

Part of the experience is also the route planning of the trip. We have a list of all possible campsites that we can use along the way and we want to do this trip so that we only stop K nights to camp. We also know in advance the distance between consecutive campsites and we are only allowed to camp at a campsite. Our goal is to plan the trip so that we minimize the maximum amount of walking done in a single day. In other words, if our trip involves 2 nights (3 days of walking), and we walk 9, 10, 5 miles on each day respectively, the cost (maximum amount of walking done in one day) is 10. Another schedule that involves walking 9, 6, 9 miles on each day has cost 9.

Given the distances between N consecutive campsites of a trail and given the number of nights for your trip, K, your task is to devise a camping strategy for the specified trail such that it minimizes the maximum amount of walking done in a single day. Note that the first distance value given is the distance from our start-point of the trail to our 1st campsite, and the last distance value given is the distance from our Nth campsite to our end-point of the trail.

Input

Input starts with an integer T (≤ 200), denoting the number of test cases.

Each case contains of two integers, the number of campsites, N (1 ≤ N ≤ 1000) and the number of nights of the trip, K (1 ≤ K ≤ min(N, 300)). The following N + 1 lines indicate the distance in miles between consecutive campsite locations. All the integers will be positive and less than 10000.

Output

For each case of input you have to print the case number and the minimized cost as described above. Then print K+1 lines, each containing the amount of distance covered in ith day. As there can be many solutions, the primary target is to find the one which ensures that each day we have to walk some distance. For ties, print the one where the distance covered in first day is maximum, then the distance covered in second day is maximum and so on.

Sample Input

Output for Sample Input

1

4 3

7

2

6

4

5

Case 1: 8

7

8

4

5


PROBLEM SETTER: JANE ALAM JAN
题意:将N+1个数分成K+1段,并且求这些段中的最大值的最小是多少,并且保证最小的情况下按照第一段最大优先,然后第二段。。。。
思路:二分+贪心
先用二分去找最大值的最小是多少,我们可以知道当我们分的段数越小那么这个最大的值就越大,所以我们二分找到,可以分成<=k+1段的最小的最大值
然后我们知道这个值的时候,贪心组合按前到后,贪心选到每段的最大,最后只要保证取到K+1段就行
 1 #include<stdio.h>
2 #include<algorithm>
3 #include<iostream>
4 #include<string.h>
5 #include<queue>
6 #include<stack>
7 #include<set>
8 #include<math.h>
9 using namespace std;
10 int ans[2000];
11 int uu[2000];
12 bool check(int k,int n,int m)
13 {
14 int i,j;
15 int sum=0;
16 int cnt=1;
17 for(i=0; i<=n; i++)
18 {
19 if(sum+ans[i]>k)
20 {
21 uu[cnt-1]=sum;
22 sum=ans[i];
23 cnt++;
24 }
25 else if(sum+ans[i]<=k)
26 {
27 sum+=ans[i];
28 }
29 }uu[cnt-1]=sum;
30 if(m>=cnt)
31 return true;
32 else return false;
33 }
34 int main(void)
35 {
36 int i,j,k;
37 int s;
38 scanf("%d",&k);
39 for(s=1; s<=k; s++)
40 { memset(uu,0,sizeof(uu));
41 int n;
42 int m;
43 int maxx=0;
44 int sum=0;
45 scanf("%d %d",&n,&m);
46 for(i=0; i<=n; i++)
47 {
48 scanf("%d",&ans[i]);
49 maxx=max(maxx,ans[i]);
50 sum+=ans[i];
51 }
52 int l=maxx;
53 int r=sum;
54 int answer=-1;
55 while(l<=r)
56 {
57 int mid=(l+r)/2;
58 bool us=check(mid,n,m+1);
59 if(us)
60 {
61 answer=mid;
62 r=mid-1;
63 }
64 else l=mid+1;
65 }
66 printf("Case %d:",s);
67 printf(" %d\n",answer);
68 check(answer,n,m);
69 int ac=0; sum=0;
70 int cnt=1;
71 for(i=0;i<=n;i++)
72 {
73 if(sum+ans[i]>answer||(n-i-1)<m-cnt)
74 {
75 uu[cnt-1]=sum;
76 sum=ans[i];
77 cnt++;
78 }
79 else
80 {
81 sum+=ans[i];
82 }
83 }
84 uu[cnt-1]=sum;
85 for(i=0;i<m+1;i++)
86 {
87 printf("%d\n",uu[i]);
88 }
89 }
90 return 0;
91 }
 

1048 - Conquering Keokradong的更多相关文章

  1. lightoj.1048.Conquering Keokradong(二分 + 贪心)

    Conquering Keokradong Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%lld & %llu ...

  2. Conquering Keokradong && Get the Containers(二分)

    Conquering Keokradong Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%lld & %llu ...

  3. NYOJ题目1048破门锁

  4. hdu 4848 Wow! Such Conquering! (floyd dfs)

    Wow! Such Conquering! Problem Description There are n Doge Planets in the Doge Space. The conqueror ...

  5. AC日记——石子归并 codevs 1048

    1048 石子归并  时间限制: 1 s  空间限制: 128000 KB  题目等级 : 黄金 Gold 题解  查看运行结果     题目描述 Description 有n堆石子排成一列,每堆石子 ...

  6. 【BZOJ】1048: [HAOI2007]分割矩阵

    http://www.lydsy.com/JudgeOnline/problem.php?id=1048 题意:给出一个a×b(a,b<=10)的矩阵,带一个<=100的权值,现在要切割n ...

  7. PAT 解题报告 1048. Find Coins (25)

    1048. Find Coins (25) Eva loves to collect coins from all over the universe, including some other pl ...

  8. 【BZOJ】【1048】【HAOI2007】分割矩阵

    DP/记忆化搜索 暴力枚举分割方案?……大概是指数级的?大约是20!的方案= =? 但是我们看到a.b.n的范围都很小……所以不同的状态数只是$10^5$级别的,可以记忆化搜索求解 比较水的一道题…… ...

  9. PAT-乙级-1048. 数字加密(20)

    1048. 数字加密(20) 时间限制 400 ms 内存限制 65536 kB 代码长度限制 8000 B 判题程序 Standard 作者 CHEN, Yue 本题要求实现一种数字加密方法.首先固 ...

随机推荐

  1. 用原生CSS编写-怦怦跳的心

    <!DOCTYPE html> <html> <head> <meta charset="utf-8"> <title> ...

  2. 学习java 7.14

    学习内容: 标准输入输出流 输出语言的本质:是一个标准的输出流 字节打印流 字符打印流 对象序列化流 明天内容: 进程和线程 遇到问题: 用对象序列化流序列化一个对象后,假如我们修改了对象所属的类文件 ...

  3. nodeJs-process对象

    JavaScript 标准参考教程(alpha) 草稿二:Node.js process对象 GitHub TOP process对象 来自<JavaScript 标准参考教程(alpha)&g ...

  4. Angular中怎样创建service服务来实现组件之间调用公共方法

    Angular组件之间不能互相调用方法,但是可以通过创建服务来实现公共方法的调用. 实现 创建服务命令 ng g service 服务路径/服务名 比如这里在app/services目录下创建stor ...

  5. vi查找替换命令详解 (转载)

    转载至:   http://blog.csdn.net/lanxinju/article/details/5731843 一.查找 查找命令 /pattern<Enter> :向下查找pa ...

  6. Linux系统中安装软件方法总结

    Linux系统中安装软件方法总结 [1]Linux系统中安装软件的几种方式 [2] Linux配置yum源(本地源和网络源) [3] SuSE下zypper源配置 [4] SUSE zypper 本地 ...

  7. 【编程思想】【设计模式】【行为模式Behavioral】command

    Python版 https://github.com/faif/python-patterns/blob/master/behavioral/command.py #!/usr/bin/env pyt ...

  8. Spring boot 配置文件默认放置位置,和加载优先级

    一 .默认配置文件目录 spring boot 启动会扫描以下位置的application.properties 或者application.yml文件作为spring boot 的默认配置文件 ,加 ...

  9. 莫烦python教程学习笔记——线性回归模型的属性

    #调用查看线性回归的几个属性 # Youtube video tutorial: https://www.youtube.com/channel/UCdyjiB5H8Pu7aDTNVXTTpcg # ...

  10. 【Jenkins系列】-备份机制

    Jenkins是主从模式,从节点可以做集群.负载,从而实现从节点的高可用,但是主节点是单节点,一旦主节点宕机,会导致Jenkins服务不可用.Jenkins主节点本身是不支持集群的,需要通过其他变通方 ...