Chapter 8 Selection Bias
上一章讲了confounding, 这种bias来源于treatment和outcome受同一个未观测的cause影响, 但是这种bias在随机实验中可以避免.
这一章要讲的试selection bias, 即便是在随机试验中, 也无法避免.
8.1 The structure of selection bias
这里, 作者给出了一个非常好的例子, 如上图所示:
\(A \in \{0, 1\}\) 表示是否注射叶酸, 而\(Y \in \{0, 1\}\) 表示胎儿是否心脏畸形, 而\(C \in \{0, 1\}\)则表示是否死亡.
这里, 虽然是否注射叶酸, 我们是随机选择的, 但是在实际调查中, 只有顺利出生(\(C=0\))的才会被记录是否心脏畸形.
所以, 我们必须在\(C=0\)的条件下估计causal effect.
但是注意到, \(A\)存在指向\(C\)的箭头(即\(A=1\)会降低死亡的风险).
此时, \(Y^a\)和\(A\)在给定\(C=1\)的条件下并不独立.
这就是本章讲的selection bias.
8.2 Examples of selection bias
8.3 Selection bias and confounding
8.4 Selection bias and censoring
虽然我们只有\(C=0\)的情况, 我们可以把\(C\)也看出一个treatment, 则我们只需要关注
\]
即可.
8.5 How to adjust for selection bias
如何计算\(\mathbb{E}[Y^{a, c=0}]\), 这一节给出的是一种特殊的IP weighting的方法, 说实话没怎么看懂, 这里以上图为例给出我自己的理解.
=
\sum_l \sum_y \frac{I(A=a, C=0)Y}{f(C=0|A=a,L=l)} \mathrm{Pr}[Y|a,c,l] \mathrm{Pr}[C=0|a,l] \mathrm{Pr}[A=a, L=l] \\
=
\sum_l \sum_y I(A=a, C=0)Y^{a,0} \mathrm{Pr}[Y^{a,0}|l] \mathrm{Pr}[A=a, L=l] \\
=
\mathbb{E} [Y^{a, c=0}] \mathrm{Pr}[A=a].
\]
其实, 个人感觉如果是
\]
就直接可以得出结果了.
8.6 Selection without bias
这一节讲了给定\(Y\)的情况下, \(A, E\)产生关联的不同情况.
Fine Point
Selection bias in case-control studies
The strength and direction of selection bias
Technical Point
THe built-in selection bias of hazard bias
Multiplicative survival model
\mathrm{Pr}[Y=1|E=e, A=a] = 1 - g(e)h(a). \\
\]
Chapter 8 Selection Bias的更多相关文章
- Chapter 9 Measurement Bias
目录 9.1 Measurement Error The structure of measurement error 9.3 Mismeasured confounders 9.4 Intentio ...
- Cross-Validation & Nested Cross-Validation
分享stackexchange的一篇问答:https://stats.stackexchange.com/questions/11602/training-with-the-full-dataset- ...
- 学习笔记之Machine Learning Crash Course | Google Developers
Machine Learning Crash Course | Google Developers https://developers.google.com/machine-learning/c ...
- CFA一级知识点总结
更多来自: www.vipcoursea.com Ethics 部分 Objective of codes and standard:永远是为了maintain public trust in ...
- Oracle12c版本中未归档隐藏参数
In this post, I will give a list of all undocumented parameters in Oracle 12.1.0.1c. Here is a query ...
- 【软件分析与挖掘】ELBlocker: Predicting blocking bugs with ensemble imbalance learning
摘要: 提出一种方法——ELBlocker,用于自动检测出Blocking Bugs(prevent other bugs from being fixed). 难度在于这些Blocking Bugs仅 ...
- PostgreSQL配置文件--QUERY TUNING
5 QUERY TUNING 5.1 Planner Method Configuration. 下列参数控制查询优化器是否使用特定的存取方法.除非对优化器特别了解,一般情况下,使用它们默认值即可. ...
- PostgreSQL.conf文件配置详解[转]
一.连接配置与安全认证 1.连接Connection Settings listen_addresses (string) 这个参数只有在启动数据库时,才能被设置.它指定数据库用来监听客户端连接的 ...
- AB实验的高端玩法系列4- 实验渗透低?用户未被触达?CACE/LATE
CACE全称Compiler Average Casual Effect或者Local Average Treatment Effect.在观测数据中的应用需要和Instrument Variable ...
随机推荐
- 数据集成工具—FlinkX
@ 目录 FlinkX的安装与简单使用 FlinkX的安装 FlinkX的简单使用 读取mysql中student表中数据 FlinkX本地运行 MySQLToHDFS MySQLToHive MyS ...
- k8s配置中心-configmap,Secret密码
目录 k8s配置中心-configmap,Secret 创建ConfigMap 使用ConfigMap subPath参数 Secret 官方文档 编写secret清单 使用secret 在 Pod ...
- java加密方式
加密,是以某种特殊的算法改变原有的信息数据,使得未授权的用户即使获得了已加密的信息,但因不知解密的方法,仍然无法了解信息的内容.大体上分为双向加密和单向加密,而双向加密又分为对称加密和非对称加密(有些 ...
- zabbix之源码安装
#:官网地址 https://www.zabbix.com/documentation/4.0/zh/manual/installation/install #:解压并创建用户 root@ubuntu ...
- 【Service】【Database】【MySQL】基础概念
1. 数据模型:层次模型.网状模型.关系模型 关系模型: 二维关系: 表:row, column 索引:index 视图:view 2. SQL接口:Structured Query Language ...
- OceanBase 2.x体验:推荐用DBeaver工具连接数据库
Original MQ4096 [OceanBase技术闲谈](javascript:void(0) 2020-01-15 OceanBase 2.x体验:推荐用DBeaver工具连接数据库 Ocea ...
- 【力扣】剑指 Offer 50. 第一个只出现一次的字符
在字符串 s 中找出第一个只出现一次的字符.如果没有,返回一个单空格. s 只包含小写字母. 示例: s = "abaccdeff"返回 "b" s = &qu ...
- ASP.NET Web API路由解析
前言 本篇文章比较长,仔细思考阅读下来大约需要15分钟,涉及类图有可能在手机显示不完整,可以切换电脑版阅读. 做.Net有好几年时间了从ASP.NET WebForm到ASP.NET MVC再到ASP ...
- Tableau使用折线图和饼图的组合
一.订单日期拖拽至列-右键天(具体到年月日) 二.订单日期拖拽至筛选器-年月-随机选择一个月的数据 三.创建计算字段-LOD-销售额 {EXCLUDE[类别]:SUM([销售额])} 四.销售额和刚刚 ...
- Python语法入门之与用户交互、运算符
一.与用户交互 输入 获取用户输入 username = input('请输入您的用户名>>>:') '''将input获取到的用户输入绑定给变量名username''' print ...