Chapter 8 Selection Bias
上一章讲了confounding, 这种bias来源于treatment和outcome受同一个未观测的cause影响, 但是这种bias在随机实验中可以避免.
这一章要讲的试selection bias, 即便是在随机试验中, 也无法避免.
8.1 The structure of selection bias
这里, 作者给出了一个非常好的例子, 如上图所示:
\(A \in \{0, 1\}\) 表示是否注射叶酸, 而\(Y \in \{0, 1\}\) 表示胎儿是否心脏畸形, 而\(C \in \{0, 1\}\)则表示是否死亡.
这里, 虽然是否注射叶酸, 我们是随机选择的, 但是在实际调查中, 只有顺利出生(\(C=0\))的才会被记录是否心脏畸形.
所以, 我们必须在\(C=0\)的条件下估计causal effect.
但是注意到, \(A\)存在指向\(C\)的箭头(即\(A=1\)会降低死亡的风险).
此时, \(Y^a\)和\(A\)在给定\(C=1\)的条件下并不独立.
这就是本章讲的selection bias.
8.2 Examples of selection bias
8.3 Selection bias and confounding
8.4 Selection bias and censoring
虽然我们只有\(C=0\)的情况, 我们可以把\(C\)也看出一个treatment, 则我们只需要关注
\]
即可.
8.5 How to adjust for selection bias
如何计算\(\mathbb{E}[Y^{a, c=0}]\), 这一节给出的是一种特殊的IP weighting的方法, 说实话没怎么看懂, 这里以上图为例给出我自己的理解.
=
\sum_l \sum_y \frac{I(A=a, C=0)Y}{f(C=0|A=a,L=l)} \mathrm{Pr}[Y|a,c,l] \mathrm{Pr}[C=0|a,l] \mathrm{Pr}[A=a, L=l] \\
=
\sum_l \sum_y I(A=a, C=0)Y^{a,0} \mathrm{Pr}[Y^{a,0}|l] \mathrm{Pr}[A=a, L=l] \\
=
\mathbb{E} [Y^{a, c=0}] \mathrm{Pr}[A=a].
\]
其实, 个人感觉如果是
\]
就直接可以得出结果了.
8.6 Selection without bias
这一节讲了给定\(Y\)的情况下, \(A, E\)产生关联的不同情况.
Fine Point
Selection bias in case-control studies
The strength and direction of selection bias
Technical Point
THe built-in selection bias of hazard bias
Multiplicative survival model
\mathrm{Pr}[Y=1|E=e, A=a] = 1 - g(e)h(a). \\
\]
Chapter 8 Selection Bias的更多相关文章
- Chapter 9 Measurement Bias
目录 9.1 Measurement Error The structure of measurement error 9.3 Mismeasured confounders 9.4 Intentio ...
- Cross-Validation & Nested Cross-Validation
分享stackexchange的一篇问答:https://stats.stackexchange.com/questions/11602/training-with-the-full-dataset- ...
- 学习笔记之Machine Learning Crash Course | Google Developers
Machine Learning Crash Course | Google Developers https://developers.google.com/machine-learning/c ...
- CFA一级知识点总结
更多来自: www.vipcoursea.com Ethics 部分 Objective of codes and standard:永远是为了maintain public trust in ...
- Oracle12c版本中未归档隐藏参数
In this post, I will give a list of all undocumented parameters in Oracle 12.1.0.1c. Here is a query ...
- 【软件分析与挖掘】ELBlocker: Predicting blocking bugs with ensemble imbalance learning
摘要: 提出一种方法——ELBlocker,用于自动检测出Blocking Bugs(prevent other bugs from being fixed). 难度在于这些Blocking Bugs仅 ...
- PostgreSQL配置文件--QUERY TUNING
5 QUERY TUNING 5.1 Planner Method Configuration. 下列参数控制查询优化器是否使用特定的存取方法.除非对优化器特别了解,一般情况下,使用它们默认值即可. ...
- PostgreSQL.conf文件配置详解[转]
一.连接配置与安全认证 1.连接Connection Settings listen_addresses (string) 这个参数只有在启动数据库时,才能被设置.它指定数据库用来监听客户端连接的 ...
- AB实验的高端玩法系列4- 实验渗透低?用户未被触达?CACE/LATE
CACE全称Compiler Average Casual Effect或者Local Average Treatment Effect.在观测数据中的应用需要和Instrument Variable ...
随机推荐
- Hadoop 相关知识点(二)
1.HDFS副本机制 Hadoopde 默认副本布局策略是: (1)在运行客户端的节点上放置第一个副本(如果客户端运行在集群之外,就随机选择一个节点,不过系统会避免选择那些存储太满或者太忙的节点): ...
- Hadoop 相关知识点(一)
作业提交流程(MR执行过程) Mapreduce2.x Client:用来提交作业 ResourceManager:协调集群上的计算资源的分配 NodeManager:负责启动和监控集群上的计算容器( ...
- oracle加密encrypt,解密decrypt
目录 oracle加密encrypt,解密decrypt 加密 解密 oracle加密encrypt,解密decrypt 有的oracle版本没有加解密函数,以下操作可以手动添加 oracle数据使用 ...
- Linux学习 - ACL权限
一.ACL权限简介 ACL权限是为了防止权限不够用的情况,一般的权限有所有者.所属组.其他人这三种,当这三种满足不了我们的需求的时候就可以使用ACL权限 二.ACL权限开启 1 查看当前系统分区 df ...
- 【Linux】【Commands】文件管理工具
文件管理工具:cp, mv, rm cp命令:copy 源文件:目标文件 单源复制:cp [OPTION]... [-T] SOURCE DEST 多源复制:cp [OPTION]... SOURCE ...
- linux 彻底卸载mysql
1. 停止 mysql 服务: systemctl stop mysqld.service 2. yum remove mysql (因为 之前是通过 yum -y install 方式安装的 ) ...
- Java常用类,这一次帮你总结好!
常用类 常用类概述: 内部类 Object类 包装类 数学类 时间类 字符串 String Builder和StringBuffer DecimalFormat 一.内部类 概念:在一个类内部再定义一 ...
- Laravel框架角色、权限
角色表结构如下: 权限表结构如下: 控制器代码: //递归查询权限列表 public function index(){ $data = ManagePermissionModel::query()- ...
- shell脚本 screen管理
一.简介 源码地址 日期:2018/4/12 介绍:使用screen来启动程序,这个脚本可以管理screen 效果图: 二.使用 适用:centos6+ 语言:中文 注意:请先写一个脚本来启动java ...
- java 编程基础:注解(Annotation Processing Tool)注解处理器 利用注解解读类属性生成XML文件
APT的介绍: APT(Annotation Processing Tool)是一种注解处理工具,它对源代码文件进行检测,并找出源文件所包含的注解信息,然后针对注解信息进行额外的处理. 使用APT工具 ...