题目传送门

题意简述:有 \(n\) 张卡牌,每张卡牌有数字 \(a_1,a_2,\cdots,a_n\)。现在随机抽取卡牌,不放回,设本次抽到的卡牌为 \(x\),上次抽到的卡牌为 \(y\),若 \(x=y\) 则游戏胜利;若 \(x<y\) 则输掉游戏;若 \(x>y\) 则游戏继续。求获胜概率。

\(a_i\leq n\leq 5\times 10^3\)。

下文认为 \(a_i\) 与 \(n\) 同阶。


不难发现我们只关心卡牌上的数字,所以开个桶维护每个数出现了几次。又因为只能从小往大抽,即无后效性,所以考虑 DP。

设 \(f_{i,j}\) 为 共抽了 \(j\) 次,每个数最多抽到一次,最后一次抽到数字 \(i\) 的概率。

首先考虑如何转移:我们设数字 \(i\) 共有 \(sz_i\) 个,那么不难列出转移方程

\[f_{i,j}=\sum_{k=0}^{i-1}f_{k,j-1}\times \frac{sz_i}{n-j+1}
\]

,表示 在 \([1,i-1]\) 中抽了 \(j-1\) 个数 的概率乘上 抽到数字 \(i\) 的概率。这样转移的时间复杂度为 \(\mathcal{O}(n^3)\),无法接受。

如果设 \(s_{i,j}\) 为 在 \(i\) 中抽了 \(j\) 个数 的概率,则有

\[s_{i,j}=\sum_{k=1}^{i}f_{i,j}
\]

,则转移方程可变形为

\[f_{i,j}=\frac{s_{i-1,j-1}sz_i}{n-j+1}
\]

。预处理逆元做到时间复杂度 \(\mathcal{O}(n^2)\),可以接受。

这实际上就是具有实际意义的前缀和优化。

最后使用滚动数组可以将空间优化到 \(\mathcal{O}(n)\)。

需要注意初始值 \(f_{0,0}=1\)。

const int N=5e3+5;
ll n,ans,sz[N],f[2][N],s[2][N];
int main(){
init(),cin>>n,s[0][0]=s[1][0]=1;
for(int i=1,a;i<=n;i++)cin>>a,sz[a]++;
for(int i=1,p=1;i<=n;i++,p^=1){
for(int j=1;j<=i;j++){
f[p][j]=s[p^1][j-1]*sz[i]%mod*iv[n-j+1]%mod;
ans=(ans+s[p^1][j-1]*sz[i]*(sz[i]-1)%mod*iv[n-j+1]%mod*iv[n-j])%mod;
s[p][j]=(s[p^1][j]+f[p][j])%mod;
}
} cout<<ans<<endl;
return 0;
}

CF1156F Card Bag的更多相关文章

  1. Codeforces 1156F Card Bag(概率DP)

    设dp[i][j]表示选到了第i张牌,牌号在j之前包括j的概率,cnt[i]表示有i张牌,inv[i]表示i在mod下的逆元,那我们可以考虑转移,dp[i][j]=dp[i-1][j-1]*cnt[j ...

  2. Educational Codeforces Round 64 部分题解

    Educational Codeforces Round 64 部分题解 不更了不更了 CF1156D 0-1-Tree 有一棵树,边权都是0或1.定义点对\(x,y(x\neq y)\)合法当且仅当 ...

  3. DP 做题记录 II.

    里面会有一些数据结构优化 DP 的题目(如 XI.),以及普通 DP. *I. P3643 [APIO2016]划艇 题意简述:给出序列 \(a_i,b_i\),求出有多少序列 \(c_i\) 满足 ...

  4. Educational Codeforces Round 64 (Rated for Div. 2)题解

    Educational Codeforces Round 64 (Rated for Div. 2)题解 题目链接 A. Inscribed Figures 水题,但是坑了很多人.需要注意以下就是正方 ...

  5. Educational Codeforces Round 64 (Rated for Div. 2) A,B,C,D,E,F

    比赛链接: https://codeforces.com/contest/1156 A. Inscribed Figures 题意: 给出$n(2\leq n\leq 100)$个数,只含有1,2,3 ...

  6. Educational Codeforces Round 64 选做

    感觉这场比赛题目质量挺高(A 全场最佳),难度也不小.虽然 unr 后就懒得打了. A. Inscribed Figures 题意 给你若干个图形,每个图形为三角形.圆形或正方形,第 \(i\) 个图 ...

  7. HDOJ 4336 Card Collector

    容斥原理+状压 Card Collector Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/O ...

  8. HDU 4336:Card Collector(容斥原理)

    http://acm.split.hdu.edu.cn/showproblem.php?pid=4336 Card Collector Special Judge Problem Descriptio ...

  9. Card Collector(HDU 4336)

    Card Collector Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)To ...

随机推荐

  1. k8s 关于Job与Cronjob

    在Kubernetes 中通过创建工作负载资源 Job 可完成大型计算以及一些批处理任务.比如 Job 转码文件.获取部分文件和目录,机器学习中的训练任务等.这篇小作文我们一起来了解 k8s 中关于 ...

  2. 脚本注入3(blind)

    布尔盲注适用于任何情况回显都不变的情况. (由此,可以看出,回显啥的其实都不重要,最重要的是判断注入点.只要找到注入点了,其他的都是浮云.) 在操作上,时间盲注还稍微简单一点:它不需要像布尔盲注那样, ...

  3. maven编码 gbk 的不可映射字符

    解决这个问题的思路: 在maven的编译插件中声明正确的字符集编码编码--编译使用的字符集编码与代码文件使用的字符集编码一致!! 安装系统之后,一般中文系统默认字符集是GBK.我们安装的软件一般都继承 ...

  4. 配置 JAVA 环境 JDK + IDEA

    配置JDK 搜索 ORACLE 官网,找到 JDK,下载 JDK8 版本 / JDK11 版本 选择合适的路径,我这里放在了 D 盘 配置下方系统环境变量,变量名为 JAVA_HOME,把刚刚安装的J ...

  5. Spring动态添加定时任务

    Spring动态添加定时任务 一.背景 二.需求和实现思路 1.能够动态的添加一个定时任务. 2.能够取消定时任务的执行. 3.动态的修改任务执行的时间. 4.获取定时任务执行的异常 三.代码实现 四 ...

  6. [HNOI2009]双递增序列(洛谷P4728)+小烈送菜(内部训练题)——奇妙的dp

    博主学习本题的经过嘤嘤嘤: 7.22 : 听学长讲(一知半解)--自己推(推不出来)--网上看题解--以为自己会了(网上题解是错的)--发现错误以后又自己推(没推出来)--给学长发邮件--得到正确解法 ...

  7. linux shell脚本中的开头#!/bin/bash的含义

    对于linux上需要执行 的shell脚本,通常第一行的内容是 #!/bin/bash 当然有很多时候不规范的写法可以忽略掉这一句,执行起来好像也是ok,结果没什么不一样 .. 这只是因为在我们常用 ...

  8. shell 脚本静默安装oracle11g

    以下脚本的手动安装连接:  https://www.cnblogs.com/leihongnu/p/12698593.html [ #/bin/bash#安装日志touch /root/message ...

  9. # Host xx.xxx.x.xxx found: line 1 /root/.ssh/known_hosts updated. Original contents retained as /root/.ssh/known_hosts.old

    一直可以ssh登录远程服务器,突然不行了. 原因:远程服务器最近打过安全补丁,安全标识已经更新. 清理本机的安全密匙即可 解决办法: #ssh-keygen -R "需要远程服务器ip地址& ...

  10. 记一次,因表变量导致SQL执行效率变慢

    场景 最近工作中,发现某同步JOB在执行中经常抛出SQL执行超时的问题,查看日志发现每次SQL执行的时间都是线性增长的,循环执行50次以后执行时间甚至超过了5分钟 JOB执行流程分析  首先,对于JO ...