CF1156F Card Bag
题意简述:有 \(n\) 张卡牌,每张卡牌有数字 \(a_1,a_2,\cdots,a_n\)。现在随机抽取卡牌,不放回,设本次抽到的卡牌为 \(x\),上次抽到的卡牌为 \(y\),若 \(x=y\) 则游戏胜利;若 \(x<y\) 则输掉游戏;若 \(x>y\) 则游戏继续。求获胜概率。
\(a_i\leq n\leq 5\times 10^3\)。
下文认为 \(a_i\) 与 \(n\) 同阶。
不难发现我们只关心卡牌上的数字,所以开个桶维护每个数出现了几次。又因为只能从小往大抽,即无后效性,所以考虑 DP。
设 \(f_{i,j}\) 为 共抽了 \(j\) 次,每个数最多抽到一次,最后一次抽到数字 \(i\) 的概率。
首先考虑如何转移:我们设数字 \(i\) 共有 \(sz_i\) 个,那么不难列出转移方程
\]
,表示 在 \([1,i-1]\) 中抽了 \(j-1\) 个数 的概率乘上 抽到数字 \(i\) 的概率。这样转移的时间复杂度为 \(\mathcal{O}(n^3)\),无法接受。
如果设 \(s_{i,j}\) 为 在 \(i\) 中抽了 \(j\) 个数 的概率,则有
\]
,则转移方程可变形为
\]
。预处理逆元做到时间复杂度 \(\mathcal{O}(n^2)\),可以接受。
这实际上就是具有实际意义的前缀和优化。
最后使用滚动数组可以将空间优化到 \(\mathcal{O}(n)\)。
需要注意初始值 \(f_{0,0}=1\)。
const int N=5e3+5;
ll n,ans,sz[N],f[2][N],s[2][N];
int main(){
init(),cin>>n,s[0][0]=s[1][0]=1;
for(int i=1,a;i<=n;i++)cin>>a,sz[a]++;
for(int i=1,p=1;i<=n;i++,p^=1){
for(int j=1;j<=i;j++){
f[p][j]=s[p^1][j-1]*sz[i]%mod*iv[n-j+1]%mod;
ans=(ans+s[p^1][j-1]*sz[i]*(sz[i]-1)%mod*iv[n-j+1]%mod*iv[n-j])%mod;
s[p][j]=(s[p^1][j]+f[p][j])%mod;
}
} cout<<ans<<endl;
return 0;
}
CF1156F Card Bag的更多相关文章
- Codeforces 1156F Card Bag(概率DP)
设dp[i][j]表示选到了第i张牌,牌号在j之前包括j的概率,cnt[i]表示有i张牌,inv[i]表示i在mod下的逆元,那我们可以考虑转移,dp[i][j]=dp[i-1][j-1]*cnt[j ...
- Educational Codeforces Round 64 部分题解
Educational Codeforces Round 64 部分题解 不更了不更了 CF1156D 0-1-Tree 有一棵树,边权都是0或1.定义点对\(x,y(x\neq y)\)合法当且仅当 ...
- DP 做题记录 II.
里面会有一些数据结构优化 DP 的题目(如 XI.),以及普通 DP. *I. P3643 [APIO2016]划艇 题意简述:给出序列 \(a_i,b_i\),求出有多少序列 \(c_i\) 满足 ...
- Educational Codeforces Round 64 (Rated for Div. 2)题解
Educational Codeforces Round 64 (Rated for Div. 2)题解 题目链接 A. Inscribed Figures 水题,但是坑了很多人.需要注意以下就是正方 ...
- Educational Codeforces Round 64 (Rated for Div. 2) A,B,C,D,E,F
比赛链接: https://codeforces.com/contest/1156 A. Inscribed Figures 题意: 给出$n(2\leq n\leq 100)$个数,只含有1,2,3 ...
- Educational Codeforces Round 64 选做
感觉这场比赛题目质量挺高(A 全场最佳),难度也不小.虽然 unr 后就懒得打了. A. Inscribed Figures 题意 给你若干个图形,每个图形为三角形.圆形或正方形,第 \(i\) 个图 ...
- HDOJ 4336 Card Collector
容斥原理+状压 Card Collector Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/O ...
- HDU 4336:Card Collector(容斥原理)
http://acm.split.hdu.edu.cn/showproblem.php?pid=4336 Card Collector Special Judge Problem Descriptio ...
- Card Collector(HDU 4336)
Card Collector Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)To ...
随机推荐
- 初始HTML03
**------------恢复内容开始------------** HTML 页面标签组成 一个完整的页面仅有一个html元素,在这个元素之下,包含head和body元素,前者负责说明页面结构,后者 ...
- Hive面试题整理(一)
1.Hive表关联查询,如何解决数据倾斜的问题?(☆☆☆☆☆) 1)倾斜原因:map输出数据按key Hash的分配到reduce中,由于key分布不均匀.业务数据本身的特.建表时考虑不周.等原因 ...
- Sobol 序列并行化的实践经验
目录 Sobol 序列并行化的实践经验 随机数发生器并行化的常见策略 Sobol 序列的原理和跳转功能 Sobol 序列并行化实践 分块策略 蛙跳策略 蛙跳策略的计算量分析 减少异或计算的技巧 分块策 ...
- UML快速概述 - All you need to know about UML
UML 是统一建模语言的缩写,就像使用一组图表来可视化软件建模的蓝图(或设计计划).它不仅可以让您彻底评估整个概念,还可以确保团队中的每个人都在同一页面上. UML 图可以组织成两个不同的组. 结 ...
- 记一次 .NET 某资讯论坛 CPU爆高分析
大概有11天没发文了,真的不是因为懒,本想前几天抽空写,不知道为啥最近求助的朋友比较多,一天都能拿到2-3个求助dump,晚上回来就是一顿分析,有点意思的是大多朋友自己都分析了几遍或者公司多年的牛皮藓 ...
- AIApe问答机器人Scrum Meeting 5.3
Scrum Meeting 6 日期:2021年5月3日 会议主要内容概述:汇报两日工作. 一.进度情况 组员 负责 两日内已完成的工作 后两日计划完成的工作 工作中遇到的困难 李明昕 后端 与前端对 ...
- xshell几款绝佳配色方案
NO.1 [mycolor] text(bold)=e9e9e9 magenta(bold)=ff00ff text=00ff80 white(bold)=fdf6e3 green=80ff00 re ...
- logstash的安装和简单使用
logstash的安装和简单使用 一.安装 1.下载并解压 2.logstash 一些命令行参数 1.查看帮助信息 2.加载指定pipeline文件路径 3.检测配置文件语法是否有错误 4.热加载pi ...
- spring cloud hystrix的隔离策略和dashboard
随着服务的拆分,各个服务有着明确的职责,服务之间通过轻量级的协议进行通讯.但有时候我们完成一个功能需要同时调用多个微服务,比如完成订单的创建,那么获取用户信息需要调用用户微服务,获取商品信息需要调用商 ...
- 百亿级小文件存储,JuiceFS 在自动驾驶行业的最佳实践
自动驾驶是最近几年的热门领域,专注于自动驾驶技术的创业公司.新造车企业.传统车厂都在这个领域投入了大量的资源,推动着 L4.L5 级别自动驾驶体验能尽早进入我们的日常生活. 自动驾驶技术实现的核心环节 ...