洛谷 P3704 [SDOI2017]数字表格(莫比乌斯函数)
题意:
求\[\prod\limits_{i=1}^n\prod\limits_{j=1}^mfib_{\gcd(i,j)}
\]\(T\) 组测试数据,\(1 \leq T \leq 10^3\),\(1 \leq n,m \leq 10^6\)
没啥好说的,直接推式子。
\]
设指数上的那一大堆玩意儿为 \(M\),那么
\]
\]
把括号里的东西预处理出来然后整除分块就行了
/*
Contest: -
Problem: P3704
Author: tzc_wk
Time: 2020.9.16
*/
#include <bits/stdc++.h>
using namespace std;
#define fi first
#define se second
#define pb push_back
#define fz(i,a,b) for(int i=a;i<=b;i++)
#define fd(i,a,b) for(int i=a;i>=b;i--)
#define foreach(it,v) for(__typeof(v.begin()) it=v.begin();it!=v.end();it++)
#define all(a) a.begin(),a.end()
#define fill0(a) memset(a,0,sizeof(a))
#define fill1(a) memset(a,-1,sizeof(a))
#define fillbig(a) memset(a,0x3f,sizeof(a))
#define y1 y1010101010101
#define y0 y0101010101010
#define int long long
typedef pair<int,int> pii;
typedef long long ll;
inline int read(){
int x=0,neg=1;char c=getchar();
while(!isdigit(c)){
if(c=='-') neg=-1;
c=getchar();
}
while(isdigit(c)) x=x*10+c-'0',c=getchar();
return x*neg;
}
const int MOD=1e9+7;
inline int qpow(int x,int e){
if(!x) return 1;
int ans=1;
while(e){
if(e&1) ans=ans*x%MOD;
x=x*x%MOD;e>>=1;
}
return ans;
}
int f[1000005],mu[1000005],p[1000005],pcnt=0,F[1000005];
bool vis[1000005];
inline void prework(int n){
f[1]=f[2]=1;
for(int i=3;i<=n;i++)
f[i]=(f[i-1]+f[i-2])%MOD;
mu[1]=1;
for(int i=2;i<=n;i++){
if(!vis[i]){p[++pcnt]=i;mu[i]=-1;}
for(int j=1;j<=pcnt&&p[j]*i<=n;j++){
vis[i*p[j]]=1;
if(i%p[j]==0) break;
mu[i*p[j]]=-mu[i];
}
}
for(int i=1;i<=n;i++) F[i]=1;
for(int i=1;i<=n;i++){
int inv=qpow(f[i],MOD-2);
for(int j=i;j<=n;j+=i){
if(!mu[j/i]) continue;
else if(~mu[j/i]) F[j]=F[j]*f[i]%MOD;
else F[j]=F[j]*inv%MOD;
}
}
for(int i=2;i<=n;i++)
F[i]=F[i-1]*F[i]%MOD;
}
signed main(){
prework(1e6);
int T=read();
while(T--){
int n=read(),m=read(),ans=1;
for(int l=1,r;l<=min(n,m);l=r+1){
r=min(n/(n/l),m/(m/l));
ans=(ans*(qpow(F[r]*qpow(F[l-1],MOD-2)%MOD,(n/l)*(m/l)%(MOD-1))))%MOD;
}
printf("%lld\n",ans);
}
return 0;
}
洛谷 P3704 [SDOI2017]数字表格(莫比乌斯函数)的更多相关文章
- bzoj 4816: 洛谷 P3704: [SDOI2017]数字表格
洛谷很早以前就写过了,今天交到bzoj发现TLE了. 检查了一下发现自己复杂度是错的. 题目传送门:洛谷P3704. 题意简述: 求 \(\prod_{i=1}^{N}\prod_{j=1}^{M}F ...
- 洛谷P3704 [SDOI2017]数字表格(莫比乌斯反演)
传送门 yyb大佬太强啦…… 感觉还是有一点地方没有搞懂orz //minamoto #include<cstdio> #include<iostream> #include& ...
- 洛谷P3704 [SDOI2017]数字表格
题目描述 Doris刚刚学习了fibonacci数列.用f[i]f[i] 表示数列的第ii 项,那么 f[0]=0f[0]=0 ,f[1]=1f[1]=1 , f[n]=f[n-1]+f[n-2],n ...
- 洛谷 P3704 SDOI2017 数字表格
题意: 给定两个整数 \(n, m\),求: \[\prod_{i = 1} ^ n \prod_{j = 1} ^ m \operatorname{Fib}_{\gcd\left(n, m\righ ...
- 洛谷3704 [SDOI2017] 数字表格 【莫比乌斯反演】
题目分析: 比较有意思,但是套路的数学题. 题目要求$ \prod_{i=1}^{n} \prod_{j=1}^{m}Fib(gcd(i,j)) $. 注意到$ gcd(i,j) $有大量重复,采用莫 ...
- 洛咕 P3704 [SDOI2017]数字表格
大力推式子 现根据套路枚举\(\gcd(i,j)\) \(ans=\Pi_{x=1}^nfib[x]^{\sum_{i=1}^{n/x}\sum_{j=1}^{n/x}[\gcd(i,j)=1]}\) ...
- P3704 [SDOI2017]数字表格
P3704 [SDOI2017]数字表格 链接 分析: $\ \ \ \prod\limits_{i = 1}^{n} \prod\limits_{j = 1}^{m} f[gcd(i, j)]$ $ ...
- [Sdoi2017]数字表格 [莫比乌斯反演]
[Sdoi2017]数字表格 题意:求 \[ \prod_{i=1}^n \prod_{j=1}^m f[(i,j)] \] 考场60分 其实多推一步就推倒了... 因为是乘,我们可以放到幂上 \[ ...
- P3704 [SDOI2017]数字表格 (莫比乌斯反演)
[题目链接] https://www.luogu.org/problemnew/show/P3704 [题解] https://www.luogu.org/blog/cjyyb/solution-p3 ...
随机推荐
- 个人记录:对于python学习的反思和总结(一)
在写代码时,总是遇到写着写着不知道怎么写了的情况,或者无法把自己的想法用程序表达出来,所以有时候我们需要建立一个自己的编程思路,对一个具体程序的编程有一个比较清晰的想法:因此我把自己的思路总结了一下, ...
- BUAA 2020 软件工程 个人博客作业
BUAA 2020 软件工程 个人博客作业 Author: 17373051 郭骏 项目 内容 这个作业属于哪个课程 2020春季计算机学院软件工程(罗杰 任健) 这个作业的要求在哪里 个人博客作业 ...
- RAW RGB格式
RAW RGB格式 10bit Raw RGB, 就是说用10bit去表示一个R, G, 或者B, 通常的都是用8bit的. 所以你后面处理时要把它转换为8bit的, 比较简单的方法就是将低两位去掉, ...
- ESD
Reverse standoff voltage是保护二极管的反向工作电压, 在这个电压, 二极管是不工作的. Breakdown voltage 是二极管的击穿电压, 超过这个电压后, 二极管迅速反 ...
- 零基础学习C语言入门必备知识
今天跟大家一起从零学C语言: 1. C语言简介 1.1 C语言发展史 C语言是一种广泛使用的面向过程的计算机程序设计语言,既适合于系统程序设计,又适合于应用程序设计.C语言的发展历程大致如图1-1所示 ...
- Machine learning(4-Linear Regression with multiple variables )
1.Multiple features So what the form of the hypothesis should be ? For convenience, define x0=1 At t ...
- 设计模式(1-2)-动态代理(newProxyInstance)
上节设计模式(1-1)-代理模式,讲了代理模式的静态代理与动态代理的写法.本节,会从Proxy.newProxyInstance() 这个方法开始讲,上一节文末的那个class文件怎么一步步的来的. ...
- P2598 [ZJOI2009]狼和羊的故事(最小割)
P2598 [ZJOI2009]狼和羊的故事 说真的,要多练练网络流的题了,这么简单的网络流就看不出来... 题目要求我们要求将狼和羊分开,也就是最小割,(等等什么逻辑...头大....) 我们这样想 ...
- 51nod_1003 阶乘后面0的数量(求N!中5的个数,数论)
题意: n的阶乘后面有多少个0? 6的阶乘 = 1*2*3*4*5*6 = 720,720后面有1个0. Input 一个数N(1 <= N <= 10^9) OutPut 输出0的数 ...
- hdu 1080 Human Gene Functions(DP)
题意: 人类基因由A.C.G.T组成. 有一张5*5的基因表.每格有一个值,叫相似度.例:A-C:-3.意思是如果A和C配对, 则它俩的相似度是-3[P.S.:-和-没有相似度,即-和-不能配对] 现 ...