题面传送门

Emmm……这题似乎做法挺多的,那就提供一个想起来写起来都不太困难的做法吧。

首先不难想到一个时间复杂度 \(\mathcal O(n^2)\) 的做法:对于每个黑点我们以它为根求出离它距离最远的点集 \(S\),那么一个白点能够摧毁这个黑点当且仅当这个白点在黑点到点集 \(S\) 中的点的 \(\text{LCA}\) 的路径上。这样我们就可以求出所有白点的答案了。

考虑优化这个过程,注意“以每个点为根”一脸可用换根 \(dp\) 优化的亚子,因此考虑换根 \(dp\),如果单纯地求到每个点距离最远的黑点那你肯定会求的欸(yyq 附体),直接一遍常规的换根 \(dp\) 就完事了。不过此题还需求 \(\text{LCA}\),因此考虑以下做法,我们先以 \(1\) 为根一遍 DFS,对于每个点 \(x\) 求出以 \(x\) 为根的子树内里 \(x\) 最远的点的 \(\text{LCA}\),然后我们再额外记录两个数组 \(dis\_out_x\) 表示去掉以 \(x\) 为根的子树内剩余部分离 \(x\) 最远的黑点离 \(x\) 的距离,以及 \(lca\_out_i\) 表示它们的 \(\text{LCA}\),怎样求这两个数组呢?就按照第二遍 DFS 的套路从上往下更新,当 DFS 到 \(x\) 时将 \(x\) 的每个子树的信息压入一个 multiset,并枚举 \(x\) 的每个儿子 \(y\),将 \(y\) 的信息从 multiset 中暂时删除,如果 multiset 中距离最大值和次大值相等那么 \(lca\_out_y\) 就是 \(x\),否则 \(lca\_out_y\) 就是 multiset 中最大值对应的 \(\text{LCA}\),最后更新答案时对于每个 \(x\) 看它子树内和子树外黑点距离其的最大值,哪边大那个 \(\text{LCA}\) 就属于那边,如果相等那么 \(\text{LCA}\) 就是 \(x\)。

最后统计答案树上差分即可,时间复杂度 \(n\log n\)。

const int MAXN=1e5;
const int LOG_N=17;
const int INF=0x3f3f3f3f;
int n,m,hd[MAXN+5],to[MAXN*2+5],val[MAXN*2+5],nxt[MAXN*2+5],ec=0;bool is[MAXN+5];
void adde(int u,int v,int w){to[++ec]=v;val[ec]=w;nxt[ec]=hd[u];hd[u]=ec;}
int fa[MAXN+5][LOG_N+2],dep[MAXN+5],dis[MAXN+5],lca_in[MAXN+5];
int dis_out[MAXN+5],lca_out[MAXN+5];
int mark[MAXN+5];
void dfs1(int x=1,int f=0){
dis[x]=(is[x]^1)*(-INF);lca_in[x]=x;fa[x][0]=f;
for(int e=hd[x];e;e=nxt[e]){
int y=to[e],z=val[e];if(y==f) continue;
dep[y]=dep[x]+1;dfs1(y,x);
if(dis[y]+z>dis[x]) dis[x]=dis[y]+z,lca_in[x]=lca_in[y];
else if(dis[y]+z==dis[x]) lca_in[x]=x;
} /*printf("%d %d %d\n",x,dis[x],lca_in[x]);*/
}
int getlca(int x,int y){
if(dep[x]<dep[y]) x^=y^=x^=y;
for(int i=LOG_N;~i;i--) if(dep[x]-(1<<i)>=dep[y]) x=fa[x][i];
if(!(x^y)) return x;
for(int i=LOG_N;~i;i--) if(fa[x][i]^fa[y][i]) x=fa[x][i],y=fa[y][i];
return fa[x][0];
}
void dfs2(int x=1,int f=0){
multiset<pii> st;
for(int e=hd[x];e;e=nxt[e]){
int y=to[e],z=val[e];
if(y==f) st.insert(mp(dis_out[x],lca_out[x]));
else st.insert(mp(dis[y]+z,lca_in[y]));
} if(is[x]) st.insert(mp(0,x));
for(int e=hd[x];e;e=nxt[e]){
int y=to[e],z=val[e];if(y==f) continue;
st.erase(st.find(mp(dis[y]+z,lca_in[y])));
if(st.empty()) dis_out[y]=(is[x])?z:(-INF),lca_out[y]=(is[x])?x:0;
else{
// printf("Node %d\n",y);
pii p=*st.rbegin();st.erase(st.find(p));dis_out[y]=z+p.fi;
// printf("%d %d\n",p.fi,p.se);
if(st.empty()||(*st.rbegin()).fi<p.fi) lca_out[y]=p.se;
else lca_out[y]=x;st.insert(p);
} st.insert(mp(dis[y]+z,lca_in[y]));dfs2(y,x);
}
}
void dfs3(int x=1,int f=0){
for(int e=hd[x];e;e=nxt[e]){
int y=to[e];if(y==f) continue;
dfs3(y,x);mark[x]+=mark[y];
}
}
int main(){
scanf("%d%d",&n,&m);for(int i=1,x;i<=m;i++) scanf("%d",&x),is[x]=1;
for(int i=1,u,v,w;i<n;i++) scanf("%d%d%d",&u,&v,&w),adde(u,v,w),adde(v,u,w);dis_out[1]=-INF;
dfs1();for(int i=1;i<=LOG_N;i++) for(int j=1;j<=n;j++) fa[j][i]=fa[fa[j][i-1]][i-1];dfs2();
for(int i=1;i<=n;i++) if(is[i]){
int y=(dis[i]==dis_out[i])?i:((dis[i]<dis_out[i])?lca_out[i]:lca_in[i]);
// printf("%d %d %d %d\n",i,dis[i],dis_out[i],y);
int z=getlca(i,y);mark[i]++;mark[y]++;mark[z]--;mark[fa[z][0]]--;
} dfs3();int mx=0,cnt=0;
for(int i=1;i<=n;i++) if(!is[i]) chkmax(mx,mark[i]);
for(int i=1;i<=n;i++) cnt+=(!is[i]&&mark[i]==mx);
printf("%d %d\n",mx,cnt);
return 0;
}

UOJ #11 - 【UTR #1】ydc的大树(换根 dp)的更多相关文章

  1. Codeforces 891D - Sloth(换根 dp)

    Codeforces 题面传送门 & 洛谷题面传送门 换根 dp 好题. 为啥没人做/yiw 首先 \(n\) 为奇数时答案显然为 \(0\),证明显然.接下来我们着重探讨 \(n\) 是偶数 ...

  2. [BZOJ4379][POI2015]Modernizacja autostrady[树的直径+换根dp]

    题意 给定一棵 \(n\) 个节点的树,可以断掉一条边再连接任意两个点,询问新构成的树的直径的最小和最大值. \(n\leq 5\times 10^5\) . 分析 记断掉一条边之后两棵树的直径为 \ ...

  3. 2018.10.15 NOIP训练 水流成河(换根dp)

    传送门 换根dp入门题. 貌似李煜东的书上讲过? 不记得了. 先推出以1为根时的答案. 然后考虑向儿子转移. 我们记f[p]f[p]f[p]表示原树中以ppp为根的子树的答案. g[p]g[p]g[p ...

  4. 换根DP+树的直径【洛谷P3761】 [TJOI2017]城市

    P3761 [TJOI2017]城市 题目描述 从加里敦大学城市规划专业毕业的小明来到了一个地区城市规划局工作.这个地区一共有ri座城市,<-1条高速公路,保证了任意两运城市之间都可以通过高速公 ...

  5. 小奇的仓库:换根dp

    一道很好的换根dp题.考场上现场yy十分愉快 给定树,求每个点的到其它所有点的距离异或上m之后的值,n=100000,m<=16 只能线性复杂度求解,m又小得奇怪.或者带一个log像kx一样打一 ...

  6. 国家集训队 Crash 的文明世界(第二类斯特林数+换根dp)

    题意 ​ 题目链接:https://www.luogu.org/problem/P4827 ​ 给定一棵 \(n\) 个节点的树和一个常数 \(k\) ,对于树上的每一个节点 \(i\) ,求出 \( ...

  7. Acesrc and Travel(2019年杭电多校第八场06+HDU6662+换根dp)

    题目链接 传送门 题意 两个绝顶聪明的人在树上玩博弈,规则是轮流选择下一个要到达的点,每达到一个点时,先手和后手分别获得\(a_i,b_i\)(到达这个点时两个人都会获得)的权值,已经经过的点无法再次 ...

  8. bzoj 3566: [SHOI2014]概率充电器 数学期望+换根dp

    题意:给定一颗树,树上每个点通电概率为 $q[i]$%,每条边通电的概率为 $p[i]$%,求期望充入电的点的个数. 期望在任何时候都具有线性性,所以可以分别求每个点通电的概率(这种情况下期望=概率 ...

  9. codeforces1156D 0-1-Tree 换根dp

    题目传送门 题意: 给定一棵n个点的边权为0或1的树,一条合法的路径(x,y)(x≠y)满足,从x走到y,一旦经过边权为1的边,就不能再经过边权为0的边,求有多少边满足条件? 思路: 首先,这道题也可 ...

随机推荐

  1. vue3.x自定义组件双向数据绑定v-model

    vue2.x 语法 在 2.x 中,在组件上使用 v-model 相当于绑定 value prop 并触发 input 事件: <ChildComponent v-model="pag ...

  2. 改善深层神经网络-week1编程题(GradientChecking)

    1. Gradient Checking 你被要求搭建一个Deep Learning model来检测欺诈,每当有人付款,你想知道是否该支付可能是欺诈,例如该用户的账户可能已经被黑客掉. 但是,反向传 ...

  3. 第四单元博客总结——暨OO课程总结

    第四单元博客总结--暨OO课程总结 第四单元架构设计 第一次UML作业 简单陈述 第一次作业较为简单,只需要实现查询功能,并在查询的同时考虑到性能问题,即我简单的将每一次查询的结果以及递归的上层结果都 ...

  4. Prometheus之告警规则的编写

    Prometheus之告警规则的编写 一.前置知识 二.需求 三.实现步骤 1.编写告警规则 2.修改prometheus.yml执行告警规则的位置 3.配置文件截图 4.页面上看告警数据信息 5.查 ...

  5. upload-labs通关攻略(1-11关)

    upload-labs通关攻略 upload-labs是练习文件上传很好的一个靶场,建议把upload-labs关卡全部练习一遍 1.下载安装 下载地址 链接:https://pan.baidu.co ...

  6. 2020 ICPC 沈阳站 I - Rise of Shadows 题解

    题面看这里 \(PS\):符号 \([\ \rm P\ ]\) 的意义是:当表达式 \(\rm P\) 为真则取值为 \(1\),为假则取值为 \(0\). 题目大意 给你一个一天有 \(H\)​​​ ...

  7. Code Runner for VS Code,下载量突破 3000 万!

    还记得五年前的夏天,我在巨硬写着世界上最好的语言,有时也需要带着游标卡尺写着另一门语言.然而,我对这两门语言都不熟悉,如果能在 VS Code 中方便快捷地运行各种语言,那岂不是很方便?于是,我就开发 ...

  8. C++ Qt 项目实战(一)之文本编辑器

    文本编辑器例图 项目开发环境 系统版本:windows10 QT 版本: 5.9.9 开发语言:C++ 已实现功能 文件操作:新建,打开,保存,另存为,打印,退出 编辑操作:复制,粘贴,剪切,查找,替 ...

  9. java中的lamda表达式

    List操作: 循环: list.forEach((p) -> System.out.printf("%s %s; %n", p.getFirstName(), p.getL ...

  10. SVN错误:Attempted to lock an already-locked dir svn: Working copy locked

    VN错误:Attempted to lock an already-locked dir update D:/workspace20/SC_200/metadata -r 3398 --force   ...