洛谷题面传送门

大概是一个比较 trivial 的小 trick?学过了就不要忘了哦(

莫名奇妙地想到了 yyq 的”hot tea 不常有,做过了就不能再错过了“

首先看到这种二维问题我们可以很自然地想到将它们映射到一个二维平面上,即我们将 \(\sum\limits_{e\in E}a_e\) 看作横坐标 \(x\),将 \(\sum\limits_{e\in E}b_e\) 看作纵坐标 \(y\),那么我们所求即是全部生成树表示的点当中横纵坐标之积最大的点。显然这些点肯定都在所有点组成的下凸壳上,因此我们只用求出下凸壳上的所有点然后依次更新答案即可。

那么怎么求下凸壳上的点呢?我们考虑分治,考虑求出所有点当中横坐标最小的点 \(A\) 和纵坐标最小的点 \(B\)——这个可以通过将边权赋为 \(a_e\) 和 \(b_e\) 分别求一遍最小生成树求出,那么我们考虑求出满足 \(C\) 在 \(AB\) 左下方且 \(S_{\triangle ABC}\) 最大的点 \(C\)——由于 \(C\) 在 \(AB\) 左下方,根据计算几何那一套理论,\(S_{\triangle ABC}\) 最大即意味着 \(\vec{BA}\times\vec{BC}\) 最大,而 \(\vec{BA}\times\vec{BC}=(x_A-x_B)(y_C-y_B)-(x_C-x_B)(y_A-y_B)\),将括号打开,与 \(C\) 无关的放一边可以得到 \(\vec{BA}\times\vec{BC}\) 最大又意味着 \((x_A-x_B)y_C-(y_A-y_B)x_C\) 最大,因此考虑将每条边边权赋为 \((x_B-x_A)b_e-(y_A-y_B)a_e\) 然后跑一遍 MST 即可求出点 \(C\),如果我们发现求出的点 \(C\) 在 \(AB\) 右上方那直接 return 掉即可,否则继续递归处理 \((A,C)\) 和 \((C,B)\)。

据说用了个什么 QuickHull 的求凸包算法,凸壳上的点数最多是值域的 \(\dfrac{2}{3}\) 次方,因此复杂度就是 \((na)^{2/3}·n\log n\),但是显然证明就不是我的事了(

不知道能不能推广到三维.jpg

const int MAXN=200;
const int MAXM=1e4;
struct edge{int u,v,w;} e[MAXM+5];
int n,m,a[MAXM+5],b[MAXM+5],f[MAXN+5];
int find(int x){return (!f[x])?x:f[x]=find(f[x]);}
void merge(int x,int y){x=find(x);y=find(y);f[x]=y;}
int ord[MAXM+5];pii ans=mp(0x3f3f3f3f,0x3f3f3f3f);
bool cmp(int x,int y){return e[x].w<e[y].w;}
pii kruskal(){
memset(f,0,sizeof(f));for(int i=1;i<=m;i++) ord[i]=i;
sort(ord+1,ord+m+1,cmp);int suma=0,sumb=0;
for(int i=1;i<=m;i++){
if(find(e[ord[i]].u)==find(e[ord[i]].v)) continue;
merge(e[ord[i]].u,e[ord[i]].v);
suma+=a[ord[i]];sumb+=b[ord[i]];
} if(1ll*suma*sumb<1ll*ans.fi*ans.se||(1ll*suma*sumb==1ll*ans.fi*ans.se&&suma<ans.fi))
ans=mp(suma,sumb);
return mp(suma,sumb);
}
void solve(pii x,pii y){
for(int i=1;i<=m;i++) e[i].w=b[i]*(y.fi-x.fi)+a[i]*(x.se-y.se);pii z=kruskal();
if(1ll*(x.fi-y.fi)*(x.se-z.se)-1ll*(x.se-y.se)*(x.fi-z.fi)>=0) return;
solve(x,z);solve(z,y);
}
int main(){
scanf("%d%d",&n,&m);
for(int i=1;i<=m;i++){
scanf("%d%d%d%d",&e[i].u,&e[i].v,&a[i],&b[i]);
++e[i].u;++e[i].v;
} pii x,y;
for(int i=1;i<=m;i++) e[i].w=a[i];x=kruskal();
for(int i=1;i<=m;i++) e[i].w=b[i];y=kruskal();
solve(x,y);printf("%d %d\n",ans.fi,ans.se);
return 0;
}

洛谷 P5540 - [BalkanOI2011] timeismoney | 最小乘积生成树(最小生成树)的更多相关文章

  1. bzoj2395[Balkan 2011]Timeismoney最小乘积生成树

    所谓最小乘积生成树,即对于一个无向连通图的每一条边均有两个权值xi,yi,在图中找一颗生成树,使得Σxi*Σyi取最小值. 直接处理问题较为棘手,但每条边的权值可以描述为一个二元组(xi,yi),这也 ...

  2. 【BZOJ2395】【Balkan 2011】Timeismoney 最小乘积生成树

    链接: #include <stdio.h> int main() { puts("转载请注明出处[辗转山河弋流歌 by 空灰冰魂]谢谢"); puts("网 ...

  3. Bzoj2395: [Balkan 2011]Timeismoney(最小乘积生成树)

    问题描述 每条边两个权值 \(x,y\),求一棵 \((\sum x) \times (\sum y)\) 最小的生成树 Sol 把每一棵生成树的权值 \(\sum x\) 和 \(\sum y\) ...

  4. P5540-[BalkanOI2011]timeismoney|最小乘积生成树【最小生成树,凸壳】

    正题 题目链接:https://www.luogu.com.cn/problem/P5540 题目大意 给出\(n\)个点\(m\)条边边权是一个二元组\((a_i,b_i)\),求出一棵生成树最小化 ...

  5. bzoj 2395 [Balkan 2011]Timeismoney——最小乘积生成树

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2395 如果把 \( \sum t \) 作为 x 坐标,\( \sum c \) 作为 y ...

  6. bzoj 2395 Timeismoney —— 最小乘积生成树

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2395 参考博客:https://www.cnblogs.com/autsky-jadek/p ...

  7. Luogu5540 最小乘积生成树

    Luogu5540 最小乘积生成树 题目链接:洛谷 题目描述:对于一个\(n\)个点\(m\)条边的无向连通图,每条边有两个边权\(a_i,b_i\),求使\((\sum a_i)\times (\s ...

  8. HDU5697 刷题计划 dp+最小乘积生成树

    分析:就是不断递归寻找靠近边界的最优解 学习博客(必须先看这个): 1:http://www.cnblogs.com/autsky-jadek/p/3959446.html 2:http://blog ...

  9. 洛谷P4014 分配问题【最小/大费用流】题解+AC代码

    洛谷P4014 分配问题[最小/大费用流]题解+AC代码 题目描述 有 n 件工作要分配给 n 个人做.第 i 个人做第 j 件工作产生的效益为c ij. 试设计一个将 n 件工作分配给 n 个人做的 ...

随机推荐

  1. Linux常用命令查看文件、别名、切换目录、创建目录、查看当前目录

    一.创建条件(使用liunx常用命令): 1.查看阿里云的环境是否搭建完成 首先快捷键 win+R 输入cmd 回车,打开命令提示符输入命令 ssh,回车.  2.登录阿里云账户 输入命令格式:ssh ...

  2. Sequence Model-week3编程题1-Neural Machine Translation with Attention

    1. Neural Machine Translation 下面将构建一个神经机器翻译(NMT)模型,将人类可读日期 ("25th of June, 2009") 转换为机器可读日 ...

  3. [技术博客] K-Means算法

    遇到的问题 在对微软\(OCR\)的\(api\)进行测试的过程中,我发现有时候它并不能分析出一个表格的形态,也就是说不知道每个文本对应在表格中的第几行第几列.但是它可以较为准确的给出这些文本的坐标. ...

  4. git常用的一些简单命令

    1.如果一个文件被修改了,但是还没有使用 git add 命令,此时想取消这次修改,需要执行的命令如下: git checkout -- 文件名 2.如果一个文件执行了 git add ,此时想取消这 ...

  5. [火星补锅] 水题大战Vol.2 T2 && luogu P3623 [APIO2008]免费道路 题解

    前言: 如果我自己写的话,或许能想出来正解,但是多半会因为整不出正确性而弃掉. 解析: 这题算是对Kruskal的熟练运用吧. 要求一颗生成树.也就是说,最后的边数是确定的. 首先我们容易想到一个策略 ...

  6. 手把手搭建自己的智能家居 - 基于 IOT Pi 的智能甲醛检测器

    智慧家居 - 基于 IOT Pi 的智能甲醛检测器 之前的文章体验 MS-RTOS 的时候入手了一个块 IOT Pi ,放着也是浪费,这次我们就利用 IOT PI 开发一个智能甲醛检测器.φ(> ...

  7. 进程间通信消息队列msgsnd执行:Invlid argument——万恶的经验主义

    最近在搞进程间通信,首先在我的ubuntu 14.04上写了接口和测试demo,编译和执行都OK,,代码如下: 接口文件ipcmsg.h /* ipcmsg.h */ #ifndef H_MSGIPC ...

  8. hdu 2586 How far away? (LCA模板)

    题意: N个点,形成一棵树,边有长度. M个询问,每个询问(a,b),询问a和b的距离 思路: 模板题,看代码.DFS预处理算出每个结点离根结点的距离. 注意: qhead[maxn],而不是qhea ...

  9. hdu 2999 Stone Game, Why are you always there? (简单SG,有个优化)

    题意: 一排石头,个数是K. 有n个数,a1...an. 每人每次取石子只能取连续的x个.x属于a1...an的一个. 没法取者负. 思路: 简单的SG.但是TLE!后面加了一个优化~这个优化不好想到 ...

  10. 【JavaScript】JS的坚实基础

    前言 ​ 考虑到在后面的开发中,需要大量的使用js语言去进行开发,所以准备重新规整一下javascript的知识点,专门开了一个js的专栏,用来复习一下js语言.万事开头难,要是后面写的有问题的,欢迎 ...