BJ2 斜率限制器
BJ2 斜率限制器
本文介绍斜率限制器取自于 Anastasiou 与 Chan (1997)[1]研究,其所利用的斜率限制器也是 Barth 与 Jespersen 限制器的一种修正形式,并且包含一参数 \(\beta\) 控制限制器耗散性大小,我们这里将其称之为 BJ2 限制器。
限制器修正解形式为
\]
限制器函数计算公式为
\]
\]
\frac{u_c^{max} - u_c}{u_j - u_c}, & u_j - u_c > 0 \cr
\frac{u_c^{min} - u_c}{u_j - u_c}, & u_j - u_c < 0 \cr
1, & u_i - u_c = 0 \cr
\end{matrix}\right.\]
其中 \(u_c^{max}=max(u_c, u_{neighbour})\),\(u_c^{min}=min(u_c, u_{neighbour})\),\(u_j\) 为未限制前数值解。
在限制器计算过程中引入了系数 \(\beta \in [1,2]\),其作用是控制限制器的耗散性。当 \(\beta=1\) 时,限制器等价于minmod限制器,而 \(\beta=2\) 时为Superbee限制器。
ANASTASIOU K, CHAN C T. Solution of the 2D shallow water equations using the finite volume method on unstructured triangular meshes[J]. International Journal for Numerical Methods in Fluids, John Wiley & Sons, Ltd, 1997, 24(11): 1225–1245. ︎
BJ2 斜率限制器的更多相关文章
- TVB斜率限制器
TVB斜率限制器 本文参考源程序来自Fluidity. 简介 TVB斜率限制器最早由Cockburn和Shu(1989)提出,主要特点是提出了修正minmod函数 \[\tilde{m}(a_1, a ...
- 流量限制器(Flux Limiter)
内容翻译自Wikipedia Flux limiter 流量限制器(Flux limiters)应用在高精度格式中-这种数值方法用来求解科学与工程问题,特别是由偏微分方程(PDE's)描述的流体动力学 ...
- 感谢 git
今天对程序大修了一下,顺便把所有算例测试了一遍,突然发现二维浅水方程有些算例出现了明显的错误. 这次突然出现的错误让我有点措手不及,因为一直没有修改过浅水方程求解器,所以这些算例很久没有测试过了.硬着 ...
- Hermite WENO 重构格式
Hermite WENO 单元重构 本文主要介绍采用 Hermite WENO 重构方法作为斜率限制器应用于二维或高维单元中. 1.简介[1] ENO格式最早由 Harten 等[2]提出,ENO格式 ...
- BZOJ 1597: [Usaco2008 Mar]土地购买 [斜率优化DP]
1597: [Usaco2008 Mar]土地购买 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 4026 Solved: 1473[Submit] ...
- [斜率优化DP]【学习笔记】【更新中】
参考资料: 1.元旦集训的课件已经很好了 http://files.cnblogs.com/files/candy99/dp.pdf 2.http://www.cnblogs.com/MashiroS ...
- BZOJ 1010: [HNOI2008]玩具装箱toy [DP 斜率优化]
1010: [HNOI2008]玩具装箱toy Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 9812 Solved: 3978[Submit][St ...
- 单调队列 && 斜率优化dp 专题
首先得讲一下单调队列,顾名思义,单调队列就是队列中的每个元素具有单调性,如果是单调递增队列,那么每个元素都是单调递增的,反正,亦然. 那么如何对单调队列进行操作呢? 是这样的:对于单调队列而言,队首和 ...
- 【BZOJ2442】 [Usaco2011 Open]修剪草坪 斜率优化DP
第一次斜率优化. 大致有两种思路: 1.f[i]表示第i个不选的最优情况(最小损失和)f[i]=f[j]+e[i] 显然n^2会T,但是可以发现f的移动情况可以用之前单调队列优化,就优化成O(n)的了 ...
随机推荐
- 【Linux命令063】Linux非常简单常用的入门命令
Linux常用命令 这是一篇我在公众号上发布的文章,还算较为受欢迎. 博客园这边荒废好长时间了,主要是最近一年经常撰写的文章都是Linux相关的入门文章. 不知道是否能通过博客园的首页审核. 1.cd ...
- oo第三单元学习总结
OO第三单元小结 一.JML语言理论基础及工具链梳理 在本单元我们学习了JML语言的一些基础知识,能够让我们看懂简单的JML规格并写出对应代码, 主要用到的知识点有: 1.requires 该子句 ...
- oo第二次博客-三次电梯调度的总结与反思
本单元从电梯调度相关问题层层深入,带领我们学习并运用了了多线程相关的知识. 三次电梯调度依次为单电梯单容量.单电梯可携带.多电梯可携带. 一.我的设计 在第一次作业中,使用了最简单的FIFO调度方法. ...
- spring cloud中使用hystrix实现回退
在微服务架构中,我们的服务被拆分成多个微服务,每个微服务完成自己的职责,微服务之间通过rpc或http进行调用.这个时候我们就要确保我们的服务高可用,但谁也说不准我们的服务能永远快速的提供服务.假如现 ...
- 热身训练2 Another Meaning
题目来源 简要题意: 众所周知,在许多情况下,一个词语有两种意思.比如"hehe",不仅意味着"hehe",还意味着"excuse me". ...
- Netty:Reactor Pattern 与 Dubbo 底层传输中的 NettyServer
首先,我们需要了解Reactor模式的三种线程模型: 1)单线程模型 Reactor 单线程模型,指的是所有的 IO 操作都在同一个 NIO 线程上面完成,NIO 线程的职责如下: 作为 NIO 服务 ...
- 实验5:开源控制器实践——POX
一.实验目的 1.能够理解 POX 控制器的工作原理: 2.通过验证POX的forwarding.hub和forwarding.l2_learning模块,初步掌握POX控制器的使用方法: 3.能够运 ...
- hadoop前期准备
最近想要学习一下hadoop,现在想边学习边记录下,方便以后自己或别人查看.(注意最好ubantu,jdk及其他软件选择32bit的,jdk最好7以上) 首先配置下jdk,下载下jdk的包,把jdk- ...
- Typora简介
Typora是什么 Typora是一款支持实时预览的Markdown文本编辑器,拥有macOS.Windows.Linux三个平台的版本,并且完全免费. 下载地址:https://www.typora ...
- 三. 为什么要用Promise
# 三. 为什么要用Promise /* 1.指定回调函数的方式更加灵活: 旧的:必须在启动异步任务前指定 promise:启动异步任务 => 返回promie对象 => 给promise ...