前情提要

是的 我终于回来补坑了

一年了哇 你这个鸽子王

斜率优化版本

今天在复习斜率优化的时候才想起来这个题

定义就不设了 大家想看可以看上面那个原版

怎么斜率优化呢?

我们考虑\(i\)点是当前的目标状态 \(j\)点是当前的最优决策

则有如下这个式子

\(f_i = i\ *\ (cnt_i - cnt_j)\ -\ (sum_i\ -\ sum_j)\ +\ f_j\)



\(f_i = i\ *\ cnt_i\ -\ i\ *\ cnt_j\ -\ sum_i\ +\ sum_j\ +\ f_j\)

根据斜率优化的套路

把和\(j\)有关的放在左边 \(同时和i和j的项放在中间\) \(只和i有关的放在右边\)

\(f_j\ + sum_j\ =\ i\ *\ cnt_j\ +\ f_i\ - \ sum_i\ +\ i\ *\ cnt_i\)

\(f_j + sum_j\)是\(y\)

\(i\)是\(k\)

\(cnt_j\)是\(x\)

\(f_i\ - \ sum_i\ +\ i\ *\ cnt_i\)是\(b\)

接下来就是常规操作了 对于\(i\) 在队列中压入\(i - m\) 维护一个斜率的下凸包即可

代码

#include <cstdio>
#include <algorithm> const int maxT = 4000105; int n, m, t, ti, ans = 1e9, l = 1, r, cnt[maxT], sum[maxT], q[maxT], f[maxT]; inline double getSlope(int u, int v) { return (double) (f[v] + sum[v] - f[u] - sum[u]) / (cnt[u] == cnt[v] ? 1e-9 : cnt[v] - cnt[u]); } int main() {
scanf("%d%d", &n, &m);
for (int i = 1; i <= n; i++) {
scanf("%d", &ti); t = std::max(t, ti);
cnt[ti]++; sum[ti] += ti;
}
for (int i = 1; i < t + m; i++) { cnt[i] += cnt[i - 1]; sum[i] += sum[i - 1]; } // 前缀和.
for (int i = 0; i < t + m; i++) {
if (i - m >= 0) {
while (l < r && getSlope(q[r - 1], q[r]) >= getSlope(q[r], i - m)) { r--; }
q[++r] = i - m; // 把可能成为最优解的推入队列.
}
while (l < r && getSlope(q[l], q[l + 1]) <= i) { l++; } // 把不可能成为最优解的弹出队列.
f[i] = cnt[i] * i - sum[i]; // 特判边界情况.
if (l <= r) { f[i] = std::min(f[i], f[q[l]] + (cnt[i] - cnt[q[l]]) * i - (sum[i] - sum[q[l]])); } // 斜率优化转移.
}
for (int i = t; i < t + m; i++) { ans = std::min(ans, f[i]); }
printf("%d\n", ans);
return 0;
}

【NOIP 2018】摆渡车的更多相关文章

  1. [OI]Noip 2018总结(普及)

    考砸了,还有原谅我代码十分有限的可读性. 一个人的真正伟大之处就在于他能够认识到自己的渺小.——保罗 从一年前初一九月到现在18年10月接触OI已经有一年了.几次模拟赛也自我感觉良好,都过了一等的线, ...

  2. NOIP 2018 普及组 解题报告

    目录 标题统计 题目链接 思路 代码 龙虎斗 题目链接: 思路 代码 摆渡车 题目链接: 思路 对称二叉树 题目链接 思路: 先来解释一下为毛现在才来发解题报告: 其实博主是参加过NOIP 2018普 ...

  3. noip 2018 D1T3 赛道修建

    noip 2018 D1T3 赛道修建 首先考虑二分答案,这时需要的就是对于一个长度求出能在树中选出来的最多的路径条数.考虑到一条路径是由一条向上的路径与一条向下的路径构成,或者仅仅是向上或向下的路径 ...

  4. NOIP 2018 总结

    NOIP 2018 总结 提高组: 应得分 \(100 + 100 + 40 + 100 + 50 + 44 = 434\). 考后期望得分 \(100 + 100 + 20 + 100 + 50 + ...

  5. noip 2018 d2t1 旅行

    noip 2018 d2t1 旅行 (题目来自洛谷) 给定n个城市,m条双向道路的图, 不存在两条连接同一对城市的道路,也不存在一条连接一个城市和它本身的道路.并且, 从任意一个城市出发,通过这些道路 ...

  6. NOIP 2018 真・退役记

    目录 NOIp 2018 真・退役记 7.01 7.05 \(summary\) 7.12 7.18 7.26 - 7.27 8.2 8.3 8.3 8.7 8.9 8.20 8.24 8.27 8. ...

  7. [Noip 2018][标题统计 龙湖斗 摆渡车 对称二叉树]普及组题解

    啊喂,都已经9102年了,你还在想去年? 这里是一个Noip2018年PJ第二题打爆的OIer,错失省一 但经过了一年,我学到了很多,也有了很多朋友,水平也提高了很多,现在回看当时: 今年的Noip ...

  8. Before NOIP 2018

    目录 总结 刷题 2018 - 9 - 24 2018 - 9 - 25 2018 - 9 - 26 2018 - 9 - 27 2018 - 9 - 28 2018 - 9 - 29 2018 - ...

  9. My thoughts after NOIP 2018(1)

    联赛就这样结束了. 感觉真是奇怪啊.以前看重的东西,像是忽然扔下的包袱,一下子轻了. 而我一直在逃避的,不愿直面的东西,果然终于还是要再次面对了啊. 文化课百废待兴,\(noip\)的最终结果依然未知 ...

随机推荐

  1. Markdown Reference

    Markdown For Typora Overview Markdown is created by Daring Fireball; the original guideline is here. ...

  2. Java中的函数式编程(五)Java集合框架中的高阶函数

    写在前面 随着Java 8引入了函数式接口和lambda表达式,Java 8中的集合框架(Java Collections Framework, JCF)也增加相应的接口以适应函数式编程.   本文的 ...

  3. 【UE4 材质】一些小功能

    利用材质实现物体自转 物体外轮廓高亮 使用postprocess+custom depth(防遮挡) https://www.tomlooman.com/soft-outlines-in-ue4/ h ...

  4. Alpha-功能规格说明书

    项目 内容 这个作业属于哪个课程 2021春季软件工程(罗杰 任健) 这个作业的要求在哪里 团队项目-计划-功能规格说明书 一.引言 1. 项目简介 项目团队:删库跑路对不队 项目名称:题士 项目内容 ...

  5. Java版流媒体编解码和图像处理(JavaCPP+FFmpeg)

    欢迎访问我的GitHub https://github.com/zq2599/blog_demos 内容:所有原创文章分类汇总及配套源码,涉及Java.Docker.Kubernetes.DevOPS ...

  6. Linux C语言链表详细分析

    链表是一种常见的基础数据结构,结构体指针在这里得到了充分的利用.链表可以动态的进行存储分配,也就是说,链表是一个功能极为强大的数组,他可以在节点中定义多种数据类型,还可以根据需要随意增添,删除,插入节 ...

  7. 矩阵n次幂的计算

    1.归纳法 两大数学归纳法 题目一 2.递推关系 题目一 题目二 3.方阵 题目一 4.矩阵对角化(重点) 题目一 题目二 题目三 题目四 5.矩阵性质(综合) 题目一 题目二 对于副对角线: 题目三

  8. 算法:数字推盘游戏--重排九宫(8-puzzle)

    一.数字推盘游戏 数字推盘游戏(n-puzzle)是一种最早的滑块类游戏,常见的类型有十五数字推盘游戏和八数字推盘游戏等.也有以图画代替数字的推盘游戏.可能Noyes Palmer Chapman在1 ...

  9. triangle leetcode C++

    Given a triangle, find the minimum path sum from top to bottom. Each step you may move to adjacent n ...

  10. 记一次排查CPU高的问题

    背景 将log4j.xml的日志级别从error调整为info后,进行压测发现CPU占用很高达到了90%多(之前也就是50%,60%的样子). 问题排查 排查思路:  看进程中的线程到底执行的是什么, ...