KNN算法实现对iris数据集的预测
KNN算法的实现
import pandas as pd
from math import dist
k = int(input("请输入k值:"))
dataTest = pd.read_csv('iristest.csv', header=None).values
trainData = pd.read_csv('iristrain.csv', header=None).values
# 用于我懒得把测试数据和训练数据封装成不同类,所以就会在成员变量里面同时出现测试数据专有的属性和测试数据的专有属性
class Data:
"""
这个类用来封装每一个数据的信息
info:数据的前4列
Label:数据标签
predict_label:数据的使用knn算法预测的标签
dis:数据离测试数据的距离
"""
def __init__(self, info, label, dis=None, predict_label=None):
self.info = info
self.label = label
self.dis = dis
self.predict_label = predict_label
def __str__(self):
return "info={0}、dis={1}、label={2}、predict_label={3}".format(self.info, self.dis, self.label,
self.predict_label)
# 重写__lt__函数方便sort直接排序
def __lt__(self, other):
return self.dis < other.dis
trainDataInClass = []
for item in trainData:
trainDataInClass.append(Data(item[0:4], item[-1]))
def getTestLabel(test_data):
"""
:param test_data: 输入点
:return: 返回该点的类别
本函数用于做输入数据的分类
"""
# 定义一个列表,用来存储距离
distance = []
for m in trainDataInClass:
# dist是一个直接计算欧氏距离的函数
m.dis = dist(m.info, test_data.info)
distance.append(m)
distance.sort()
# 定义一个列表来存储最近前k名的Label
label_top = []
for j in range(0, k):
label_top.append(distance[j].label)
test_data.predict_label = max(label_top, key=label_top.count)
return test_data
# 测试数据
# 定义一个存储预测之后的数据的列表
predict_list = []
for item in dataTest:
predict_list.append(getTestLabel(Data(item[0:4], item[-1])))
# 定义一个变量用于存储预测准确的数据数量
predict_true_cnt = 0
for item in predict_list:
if item.label == item.predict_label:
predict_true_cnt += 1
# 计算精度
precision = predict_true_cnt / len(predict_list)
print(precision)
没有做交叉验证,所以附上训练数据集和测试数据集
测试数据集,点击下载
训练数据集,点击下载
KNN算法实现对iris数据集的预测的更多相关文章
- kNN算法实例(约会对象喜好预测和手写识别)
import numpy as np import operator import random import os def file2matrix(filePath):#从文本中提取特征矩阵和标签 ...
- 机器学习简要笔记(三)-KNN算法
#coding:utf-8 import numpy as np import operator def classify(intX,dataSet,labels,k): ''' KNN算法 ''' ...
- 机器学习回顾篇(6):KNN算法
1 引言 本文将从算法原理出发,展开介绍KNN算法,并结合机器学习中常用的Iris数据集通过代码实例演示KNN算法用法和实现. 2 算法原理 KNN(kNN,k-NearestNeighbor)算法, ...
- kNN算法:K最近邻(kNN,k-NearestNeighbor)分类算法
一.KNN算法概述 邻近算法,或者说K最近邻(kNN,k-NearestNeighbor)分类算法是数据挖掘分类技术中最简单的方法之一.所谓K最近邻,就是k个最近的邻居的意思,说的是每个样本都可以用它 ...
- Python 手写数字识别-knn算法应用
在上一篇博文中,我们对KNN算法思想及流程有了初步的了解,KNN是采用测量不同特征值之间的距离方法进行分类,也就是说对于每个样本数据,需要和训练集中的所有数据进行欧氏距离计算.这里简述KNN算法的特点 ...
- 用Python实现支持向量机并处理Iris数据集
SVM全称是Support Vector Machine,即支持向量机,是一种监督式学习算法.它主要应用于分类问题,通过改进代码也可以用作回归.所谓支持向量就是距离分隔面最近的向量.支持向量机就是要确 ...
- 吴裕雄--天生自然python机器学习实战:K-NN算法约会网站好友喜好预测以及手写数字预测分类实验
实验设备与软件环境 硬件环境:内存ddr3 4G及以上的x86架构主机一部 系统环境:windows 软件环境:Anaconda2(64位),python3.5,jupyter 内核版本:window ...
- k-近邻(KNN) 算法预测签到位置
分类算法-k近邻算法(KNN): 定义: 如果一个样本在特征空间中的k个最相似 (即特征空间中最邻近) 的样本中的大多数属于某一个类别,则该样本也属于这个类别 来源: KNN算法最早是由Cover和H ...
- iris数据集预测
iris数据集预测(对比随机森林和逻辑回归算法) 随机森林 library(randomForest) #挑选响应变量 index <- subset(iris,Species != " ...
随机推荐
- C++ cin和while cin
int main(){ string input; vector<string> arr; while(cin >> input) { cout << " ...
- 爬虫逆向基础,理解 JavaScript 模块化编程 webpack
关注微信公众号:K哥爬虫,QQ交流群:808574309,持续分享爬虫进阶.JS/安卓逆向等技术干货! 简介 在分析一些站点的 JavaScript 代码时,比较简单的代码,函数通常都是一个一个的,例 ...
- 用例图示例:使用系统边界表示多个项目 / Using System Boundary to model Multiple Projects in Use Case Diagram
什么是用例图? 用例是一种捕获系统功能需求的技术.用例描述了一个独立于实现细节的期望行为.用例的目标是捕获用户设想的所有系统级功能.从用户的角度来看,用例是关于系统应该做什么的.用例捕获系统利益相关者 ...
- 简明教程 | Docker篇 · 其二:Dockerfile的编写
Dockerfile是什么 一个包含用于组合 image 的命令的文本文件,docker 通过 dockerfile 和构建环境的上下文来构建 image . 编写Dockerfile FROM 首先 ...
- Jquery取值方法汇总
一.下拉框 1.jquery获取当前选中select的text值 var a = $("#ShareMoneyType").find("option:selected&q ...
- (三)FastDFS 高可用集群架构学习---Client 接口开发
一.Python3 与 FastDFS 交互 1.安装 py3fdfs模块 # pip3 install py3Fdfs 2.测试使用 py3Fdfs 与 Fastdfs 集群交互(上传文件) fro ...
- (一)《SQL进阶教程》学习记录--CASE
背景:最近用到统计之类的复杂Sql比较多,有种"提笔忘字"的感觉,看书练习,举一反三,巩固加强. (一) <SQL进阶教程>学习记录--CASE (二) <SQL ...
- TestNG 参数化应用
一.第一种参数化方式(testng.xml配置参数) 1.新建ParameterDemo04类 2.拷贝类的路径 3.testng.xml配置类地址及参数 <?xml version=" ...
- 浅谈springboot自动配置原理
前言 springboot自动配置关键在于@SpringBootApplication注解,启动类之所以作为项目启动的入口,也是因为该注解,下面浅谈下这个注解的作用和实现原理 @SpringBootA ...
- mapper接口绑定异常
前言 由于MP的代码生成器把mapper接口绑定的写sql语句xml文件创建在java目录下,而Maven加载机制只会将.java文件编译成.class文件,所以在target目录下找不到写xml文件 ...