[源码解析] PyTorch 分布式(10)------DistributedDataParallel之Reducer静态架构

目录

0x00 摘要

通过上文分析,我们已经知道了 DDP 的基本架构和如何初始化,本文就看看其核心 Reducer 的静态架构。Reducer提供了反向传播中梯度同步的核心实现。

本系列其他文章如下:

深度学习利器之自动微分(1)

深度学习利器之自动微分(2)

[源码解析]深度学习利器之自动微分(3) --- 示例解读

[源码解析]PyTorch如何实现前向传播(1) --- 基础类(上)

[源码解析]PyTorch如何实现前向传播(2) --- 基础类(下)

[源码解析] PyTorch如何实现前向传播(3) --- 具体实现

[源码解析] Pytorch 如何实现后向传播 (1)---- 调用引擎

[源码解析] Pytorch 如何实现后向传播 (2)---- 引擎静态结构

[源码解析] Pytorch 如何实现后向传播 (3)---- 引擎动态逻辑

[源码解析] PyTorch 如何实现后向传播 (4)---- 具体算法

[源码解析] PyTorch 分布式(1)------历史和概述

[源码解析] PyTorch 分布式(2) ----- DataParallel(上)

[源码解析] PyTorch 分布式(3) ----- DataParallel(下)

[源码解析] PyTorch 分布式(4)------分布式应用基础概念

[源码解析] PyTorch分布式(5) ------ DistributedDataParallel 总述&如何使用

[源码解析] PyTorch分布式(6) ---DistributedDataParallel -- 初始化&store

[源码解析] PyTorch 分布式(7) ----- DistributedDataParallel 之进程组

[源码解析] PyTorch 分布式(8) -------- DistributedDataParallel之论文篇

[源码解析] PyTorch 分布式(9) ----- DistributedDataParallel 之初始化

0x01 引论

1.1 调用

Reducer 的创建代码如下,是在_ddp_init_helper 之中。

        # Note: reverse list of buckets because we want to approximate the
# order in which their gradients are produced, and assume they
# are used in the forward pass in the order they are defined.
self.reducer = dist.Reducer(
parameters, # parameters[0]是张量列表
list(reversed(bucket_indices)), # 桶信息
self.process_group,
expect_sparse_gradient,
self.bucket_bytes_cap,
self.find_unused_parameters,
self.gradient_as_bucket_view,
param_to_name_mapping,
)

调用的 parameters 举例如下, parameters[0] 就是 rank 0 上模型的 parameters,可以看到其只有 [0] 元素有意义,这个 [0] 原始本身包括 20 个元素:

parameters = {list: 1}
0 = {list: 4}
0 = {Parameter: 10} Parameter containing:\ntensor([[-4.0381e-02, 3.8828e-02, 1 )
1 = {Parameter: 10} Parameter containing:\ntensor([-0.0438, -0.2033, 0.2771, 0.0721, )
2 = {Parameter: 5} Parameter containing:\ntensor([[-0.0094, -0.1319, 0.0713, 0.3155, )
3 = {Parameter: 5} Parameter containing:\ntensor([-0.0008, 0.0582, -0.1245, -0.2538, )
...
20 = {Parameter: 5} Parameter containing:\ntensor([-0.0008, 0.0582, -0.1245, -0.2538, )
__len__ = {int} 20
__len__ = {int} 1

bucket_indices 举例如下:

关于 tensor indices,就是给所有的tensor一个index,从0开始递增,一直到 tensors.size()。假如模型的 parameters 一共有20个张量,则 tensor index 从 0 到 19,分成 6 个buckets,则在这6个buckets之中,每个 tensor index 都是唯一不重复的。

+-----------------------------------------------------------------------+
| |
| <tensor index 0, tensor index 1, tensor index 2, tensor index 3> |
| |
| |
| <tensor index 4, tensor index 5, tensor 6> |
| |
| |
| ...... |
| |
| |
| <tensor index 16, tensor index 17, tensor index 18, tensor index 19> |
| |
+-----------------------------------------------------------------------+

python代码无意义,我们只能看看C++。

class Reducer(__pybind11_builtins.pybind11_object):
def __init__(self, replicas, *args, **kwargs):
""" __init__(self: torch._C._distributed_c10d.Reducer, replicas: List[List[at::Tensor]], bucket_indices: List[List[int]], process_group: c10d::ProcessGroup, expect_sparse_gradients: List[List[bool]] = [], bucket_bytes_cap: int = 26214400, find_unused_parameters: bool = False, gradient_as_bucket_view: bool = False, param_to_name_mapping: Dict[int, str] = {}) -> None """
pass

于是我们来到了 torch/lib/c10d/reducer.h 和 torch/lib/c10d/reducer.cpp。

0x02 Reducer 定义

Reducer提供了反向传播中梯度同步的核心实现,其定义相当复杂,我们甚至需要去掉一些不重要的成员变量以便展示:

class Reducer {
public:
// The constructor takes a list of variables for every model replica.
// The bucket assignment for this reducer is specified as a list of
// buckets, each of which is specified as a list of indices into the
// variables list for **a single replica** (i.e. `variables[0]`).
explicit Reducer(
std::vector<std::vector<at::Tensor>> replicas,
std::vector<std::vector<size_t>> bucket_indices,
c10::intrusive_ptr<c10d::ProcessGroup> process_group,
std::vector<std::vector<bool>> expect_sparse_gradients,
int64_t bucket_bytes_cap,
bool find_unused_parameters,
bool gradient_as_bucket_view,
std::unordered_map<size_t, std::string>
paramNames); protected:
// Forward declaration.
struct Bucket; void push_rebuilt_params(const VariableIndex& index); mutable std::mutex mutex_;
const std::vector<std::vector<at::Tensor>> replicas_;
const c10::intrusive_ptr<::c10d::ProcessGroup> process_group_;
std::vector<std::vector<bool>> expect_sparse_gradients_; std::vector<std::vector<std::shared_ptr<torch::autograd::Node>>>
grad_accumulators_;
std::unordered_map<torch::autograd::Node*, VariableIndex>
gradAccToVariableMap_;
std::vector<std::pair<uintptr_t, std::shared_ptr<torch::autograd::Node>>>
hooks_; bool expect_autograd_hooks_;
bool require_finalize_;
size_t next_bucket_; bool has_marked_unused_parameters_;
const bool find_unused_parameters_;
const bool gradient_as_bucket_view_;
std::vector<VariableIndex> unused_parameters_; // 如果没有用到,直接设置为就绪,第一次迭代之后久不会改变了
// Locally used parameter maps indicating if parameters are used locally
// during the current iteration or no_sync session if no_sync is on. One
// tensor for each model replica and each tensor is one-dim int32 tensor of
// number of parameters. These tensors are marked in autograd_hook to indicate
// the corresponding param has been used, and get allreduced in the end of
// backward of current iteration or no_sync session for figuring out the
// globally unused parameters.
//
// local_used_maps_: CPU tensors for bookkeeping locally used params
// local_used_maps_dev_: dev tensors for reducing globally unused params
std::vector<at::Tensor> local_used_maps_;
std::vector<at::Tensor> local_used_maps_dev_;
// Indicate that reduction is done and D2H copy is done as well.
bool local_used_maps_reduced_; using GradCallback =
torch::distributed::autograd::DistAutogradContext::GradCallback; // A bucket replica represents [1..N] gradients to be reduced,
// with the same dtype, on the same device.
//
// Batching gradients together before reducing them can result in lower
// overhead and/or faster time to completion. Only gradients of the same type
// and on the same device can be batched. The tensor that represents the
// flattened gradient uses the same type and is placed on the same device.
// Buckets are filled as the gradients they hold are computed (triggered by
// autograd hooks). Buckets are reduced in a predetermined order that is
// identical across processes.
struct BucketReplica {
// Flattened (1 dimensional) contents of bucket.
at::Tensor contents; // Views into contents for each grad. Each view will be created with
// layout (sizes + strides) matching the grad's expected layout
// ("Gradient Layout Contract" in torch/csrc/autograd/AccumulateGrad.h).
// `bucket_views_in[i].copy_(grad)` and
// `grad.copy_(bucket_views_out[i])`
// provide convenient ways to move grad data in/out of contents.
// The reason we keep two states for bucket_views is that if DDP
// communication hook was registered, `bucket_views_out` could be
// re-initialized with the value of hook's `future_work`. We still need to
// keep a separate view reference to replica's original contents for
// `bucket_views_in[i].copy_(grad)` call.
std::vector<at::Tensor> bucket_views_in;
std::vector<at::Tensor> bucket_views_out; // Variables that contribute to this bucket replica. Use refcounted value
// here so that we can easily unflatten the bucket contents into the
// participating variables after reduction has completed.
std::vector<at::Tensor> variables; // Per-variable offset/length into the flat bucket contents tensor and grad
// bucket.
std::vector<size_t> offsets;
std::vector<size_t> lengths; // Per-variable sizes into the grad bucekt.
std::vector<c10::IntArrayRef> sizes_vec; // Number of tensors to be added before this bucket is complete.
// This is reset to `variables.size()` every iteration.
size_t pending; // TODO(@pietern)
// Memory copies from gradient tensors into the bucket are potentially
// done on different CUDA streams. We record an event for every copy
// so that we can synchronize with them prior to kicking off the reduction.
// std::vector<at::cuda::CUDAEvent> events;
};
// A bucket holds N bucket replicas (1 per model replica).
//
// If every bucket in this struct is ready, the reduction can be kicked off.
// One bucket per replica. Reduction is kicked off when every bucket is ready.
//
struct Bucket {
std::vector<BucketReplica> replicas; // Global indices of participating variables in the bucket
std::vector<size_t> variable_indices; // Number of replicas to be marked done before this bucket is ready.
size_t pending; // Keep work handle around when this set of buckets is being reduced.
c10::intrusive_ptr<c10d::ProcessGroup::Work> work; // Keep future work handle around if DDP comm hook is registered.
c10::intrusive_ptr<torch::jit::Future> future_work; // If this bucket should expect a single sparse gradient.
// Implies: replicas[i].variables.size() == 1.
bool expect_sparse_gradient = false;
}; std::vector<Bucket> buckets_; // A variable locator locates a particular variable in the bucket
// structure. The `bucket_index` field points to the bucket in the `buckets_`
// vector. The `intra_bucket_index` field points to the index of the variable
// in any of the vector fields in the bucket replica.
struct VariableLocator {
// Index into the `buckets_` variable.
size_t bucket_index;
// Index of parameter in single bucket replica.
size_t intra_bucket_index; VariableLocator() = default; VariableLocator(size_t bucket_index_, size_t intra_bucket_index_) {
bucket_index = bucket_index_;
intra_bucket_index = intra_bucket_index_;
}
}; // Map the index of a variable to its location in the bucket structure.
std::vector<VariableLocator> variable_locators_; // track the number of iterations to synchronize grads in training so far.
long num_iterations_;
// track the number of buckets that have been ready for
// communication calls like allReduce or communication hooks.
int num_buckets_ready_; // We collect the relative timestamp of every gradient being ready
// when executing autograd. This can be used to derive a timeline of
// the point in time buckets were ready, or ideal bucket assignment/ordering.
std::vector<std::vector<int64_t>> backward_stats_; int ddp_runtime_logging_sample_rate_ = kDDPRuntimeLoggingSampleRate; bool is_multi_device_module_ = false; // Following variables are to help build dynamic bucket order
bool has_rebuilt_bucket_;
std::vector<at::Tensor> rebuilt_params_;
std::vector<int64_t> rebuilt_param_indices_;
const int64_t bucket_bytes_cap_; struct RpcContext {
using ContextPtr = torch::distributed::autograd::ContextPtr;
// The shared_ptr is to hold the context instance.
ContextPtr context_ptr_holder;
std::atomic<ContextPtr::element_type*> context_ptr{nullptr}; void set(ContextPtr&& new_context_ptr);
};
RpcContext rpc_context_; // A struct containing work handle and tensor for allreduce scheduled in
// forward pass, if applicable.
struct ForwardPassAllreduceWork {
c10::intrusive_ptr<c10d::ProcessGroup::Work> workHandle;
at::Tensor resultTensor;
// whether we should divide by the initial world_size or the no. of
// remaining DDP ranks.
bool useStaticWorldSize;
}; // Handle for the currently scheduled allreduce in the forward pass, if
// applicable.
ForwardPassAllreduceWork forwardPassWorkHandle_; // Division factor for reduction of gradients.
int divFactor_; bool static_graph_; // Key: VariableIndex, Value: the number of times that a variable's autograd_hook()
// should be triggered before marking this variable's grad as ready for communication.
// Map will not change after 1st iteration.
std::unordered_map<VariableIndex, int, c10::hash<VariableIndex>> numGradHooksTriggeredMap_;
// Key: VariableIndex, Value: the number of times that a variable's autograd_hook()
// are left to be triggered before marking this variable's grad as ready for communication.
// Map will change after 1st iteration to track a grad is ready for communication or not.
std::unordered_map<VariableIndex, int, c10::hash<VariableIndex>> numGradHooksTriggeredMapPerIteration_; private:
// comm_hook_ is used to access the DDP communication hook if registered.
std::unique_ptr<CommHookInterface> comm_hook_;
// Current thread local state
at::ThreadLocalState thread_local_state_;
// Debug level setting. It is parsed once when Reducer is constructed, and
// remains the same across a single invocation of DDP training.
DistributedDebugLevel ddp_debug_level_;
// Mapping of variable index to fully qualified name of model to notify users
// about errors when certain parameters do not get gradient.
std::unordered_map<size_t, std::string> param_names_;
// Per iteration set of parameter indices that have been marked ready.
std::unordered_set<size_t> perIterationReadyParams_;
// Retrieves parameter names that have not been marked as ready as part of
// previous iteration.
std::vector<std::string> getUnmarkedParamsForIteration();
// Retrives parameter indices that have not been marked as ready as part of
// previous iteration.
std::vector<size_t> getUnmarkedParamIndicesForIteration();
// Raises appropriate error if mark_variable_ready is called on the same
// variable twice, which is unexpected.
void checkAndRaiseMarkedTwiceError(size_t curVariableIndex); friend class Logger;
};

Reducer 的关键成员变量如下。

  std::vector<std::vector<std::shared_ptr<torch::autograd::Node>>>
grad_accumulators_; // 对应的 index 存了相应的 grad_accumulator,就是 tensor index对应的grad_accumulator
std::unordered_map<torch::autograd::Node*, VariableIndex>
gradAccToVariableMap_; // 存了grad_accumulator & index 的对应关系,这样以后在 autograd graph 寻找 unused parameters 就方便了
std::vector<std::pair<uintptr_t, std::shared_ptr<torch::autograd::Node>>>
hooks_; std::vector<Bucket> buckets_; const std::vector<std::vector<at::Tensor>> replicas_; // 传入的张量
const c10::intrusive_ptr<::c10d::ProcessGroup> process_group_; // 进程组

我们接下来一一分析这些成员变量。

0x03 Bucket

3.1 设计

在规约梯度之前将梯度批处理在一起可以降低开销和/或加快完成时间。但是只能对同一设备上相同类型的梯度进行批处理。

桶是梯度的集合,统一设备上相同类型的梯度被放到同一个桶之中。在代码之中,Bucket 就是桶的概念。

在每次向后传播中,将所有参数梯度中的张量复制到桶中,并在AllReduce之后将平均梯度复制回桶中。为了加速复制操作,存储桶始终与参数在同一设备上创建。如果模型跨越多个设备,DDP会考虑设备关联性,以确保同一存储桶中的所有参数都位于同一设备上。AllReduce的顺序也会对结果产生影响,因为它决定了多少通信可以与计算重叠。DDP按model.parameters()的相反顺序启动AllReduce

3.2 定义

3.2.1 BucketReplica有几个

为了更好的说明,我们首先要分析一下 BucketReplica 是什么。我们从注释出发看看。

首先,一个桶 Bucket 有多个BucketReplica,每一个模型对应一个BucketReplica。

// A bucket holds N bucket replicas (1 per model replica).

但是只用了一个 [0] 元素,因为目前不支持单进程多设备模式,所以假定桶里只有一个replica。

    GradBucket grad_bucket(
next_bucket_,
tensors[0],
// 这里的注释指明了不支持 SPMD
// Since currently we do not support single-process multiple-device
// mode, we can assume only one replica in the bucket.
bucket.replicas[0].offsets,
bucket.replicas[0].lengths,
bucket.replicas[0].sizes_vec);
bucket.future_work = comm_hook_->runHook(grad_bucket);

再结合前文代码,未来不会支持 SPMD。parameters 就是 [ToyModel] 这个模型列表的参数集合,parameters[0] 就是 ToyModel 的参数。

    # 下面注释指明了未来也不会支持 SPMD
# TODO(wayi@): Remove this field since SPMD is no longer supported,
# and also remove all the relevant unnecessary loops.
# Module replication within process (single-process multi device) self._module_copies = [self.module] # 构建一个比如 [ToyModel] 这样的列表
# Build parameters for reducer.
parameters, expect_sparse_gradient = self._build_params_for_reducer()

综合以上我们知道:

  • DDP 原来是希望像 DP 那样支持 SPMD,所以本进程就需要维护多个 GPU 之上的多个模型副本的参数,即,parameters 就是一个数组,数组中每个元素是一个模型副本的参数。
  • parameters 被赋值为 Reducer.replicas_,而 Reducer.replicas_ 用来赋值给 bucket.replicas。
  • 因为未来不支持Reducer.replicas_,所以只有 parameters[0] 有意义。

所以我们得出结论:

  • BucketReplica 就是一个模型的待求梯度参数组。replica 对应一个 device (GPU)上的模型副本的参数信息(部分),即,一个 replica 代表了 [1..N] 个需要被规约的梯度,这些梯度拥有同样的 dtype,位于同样的设备上。
  • 事实上,只有 bucket.replicas[0] 有意义,就对应了上面代码中的 [self.module] 之中的部分需求导张量,就是 parameters[0] 。

3.2.2 关键

我们再总结一下 Bucket 的关键:

  • replicas 成员变量就是 bucket 对应的各个BucketReplica。一个 BucketReplica 代表了 [1..N] 个需要被规约的梯度,这些梯度拥有同样的 dtype,位于同样的设备上。

    • 只有 bucket.replicas[0] 有意义,就对应了本模型的待求梯度参数组之中本bucket对应的张量
    • 如何赋值?就是使用 Reducer.replicas_ 来赋值,而 replicas_ 就是参数 parameters。我们下面就会介绍。
  • variable_indices 成员变量用来记录本桶之中有哪些variable 的index。

    如何赋值?使用前面介绍的 bucket_indices 进行赋值。

    bucket.variable_indices = std::move(bucket_indices[bucket_index]);

    如何使用?intra_bucket_index 是bucket.variable_indices的序号,利用序号得到真正的variable index。后文会依据代码再进行阐释。

    size_t variable_index = bucket.variable_indices[intra_bucket_index];

3.2.3 具体定义

最后,Bucket 具体定义如下:

  // A bucket holds N bucket replicas (1 per model replica).
//
// If every bucket in this struct is ready, the reduction can be kicked off.
// One bucket per replica. Reduction is kicked off when every bucket is ready.
//
struct Bucket {
std::vector<BucketReplica> replicas;// 每个模型副本对应一个桶 // Global indices of participating variables in the bucket
std::vector<size_t> variable_indices; // 具体每个桶里面有哪些 variable。 // Number of replicas to be marked done before this bucket is ready.
size_t pending; // 计数, // Keep work handle around when this set of buckets is being reduced.
c10::intrusive_ptr<c10d::ProcessGroup::Work> work; // Keep future work handle around if DDP comm hook is registered.
c10::intrusive_ptr<torch::jit::Future> future_work; // If this bucket should expect a single sparse gradient.
// Implies: replicas[i].variables.size() == 1.
bool expect_sparse_gradient = false;
};

3.3 设置

Reducer 的成员变量buckets_ 是关键,这是Reducer 之中所有的桶。

std::vector<Bucket> buckets_;

在初始化函数中有如何初始化 buckets_,核心是:

  • 找到本bucket在 bucket_indices 之中的 index。
  • 在 parameters 之中找到 index 对应的张量。
  • 在 BucketReplica 之中配置这些张量,就是本bucket应该规约的张量。
void Reducer::initialize_buckets(
std::vector<std::vector<size_t>> bucket_indices) { buckets_.reserve(bucket_count); for (size_t bucket_index = 0; bucket_index < bucket_count; bucket_index++) {
Bucket bucket; // Variables that expect sparse gradients must have their own bucket.
if (bucket_indices[bucket_index].size() == 1) {
const auto variable_index = bucket_indices[bucket_index].front();
bucket.expect_sparse_gradient = // 设置 bucket
expect_sparse_gradients_[0][variable_index];
}
// Iterate over model replicas.
for (size_t replica_index = 0; replica_index < replica_count;
replica_index++) { BucketReplica replica; // 设置replica if (bucket.expect_sparse_gradient) {
const auto variable_index = bucket_indices[bucket_index].front();
// 找到index对应的tensor
const auto& variable = replicas_[replica_index][variable_index];
replica.variables = {variable};
} else { // Iterate over bucket variables.
for (const auto variable_index : bucket_indices[bucket_index]) {
// 找到index对应的tensor
const auto& variable = replicas_[replica_index][variable_index];
if (!options.has_device()) {
options = options.device(variable.device());
}
if (!options.has_dtype()) {
options = options.dtype(variable.dtype());
} const auto length = variable.numel();
replica.variables.push_back(variable); // 插入张量
replica.offsets.push_back(offset);
replica.lengths.push_back(length);
replica.sizes_vec.push_back(variable.sizes());
offset += length;
} // Allocate bucket contents tensor.
initialize_bucket_views(replica, replica.contents);
} // Add bucket replica to enclosing bucket.
bucket.replicas.push_back(std::move(replica)); // 配置bucket
} bucket.variable_indices = std::move(bucket_indices[bucket_index]);
buckets_.push_back(std::move(bucket)); //插入桶列表
}
}

用图例表示如下,这里假设 bucket index 是 1,即第 2 个桶,所以 variable_indices 对应了 bucket_indices 中的相应部分。比如 BucketReplica[0] 里面是 Tensor 4,5,6,而variable_indices就是 Tensor 4,5,6 分别的 index。

下图中的 bucket_indices 是 Reducer 构造函数的参数之一。

+--------------------------------+   +------------------------------------+
|Reducer | | |
| | |bucket 0, bucket 1, ...... bucket n |
| vector<Bucket> buckets_ +---> | + |
| | | | |
+--------------------------------+ +------------------------------------+
|
+---------------+ +------------------------------+
| +--> | Tensor 4, Tensor 5, Tensor 6 |
| | +------------------------------+
| |
v +-----------------------------------------+
+-------------------------+-----------+ | | |
| Bucket | | +---+-----------+ +---------------+ |
| | | | BucketReplica | | BucketReplica | |
| | | | | ... | | |
| vector<BucketReplica> replicas +--------> | +---------------+ +---------------+ |
| | +-----------------------------------------+
| |
| vector<size_t> variable_indices +-------> <tensor index 4, tensor index 5, tensor 6>
| |
+-------------------------------------+ bucket_indices +-----------------------------------------------------------------------+
+ | |
| | <tensor index 0, tensor index 1, tensor index 2, tensor index 3> |
| | |
+----------> | |
| <tensor index 4, tensor index 5, tensor 6> |
| |
| |
| ...... |
| |
| |
| <tensor index 16, tensor index 17, tensor index 18, tensor index 19> |
| |
+-----------------------------------------------------------------------+

0x03 BucketReplica

如前面讨论的,一个 BucketReplica 代表了 [1..N] 个需要被规约的梯度,这些梯度拥有同样的 dtype,位于同样的设备上。是一个模型待求梯度参数的一部分,具体是哪些,由 bucket 的 variable_indices 决定。

其关键成员变量为:

  • std::vector<at::Tensor> variables 是构成此bucket副本的variable。我们在这里使用refcounted value,这样我们就可以在完成规约之后,轻松地将bucket内容 unflatten 到参与变量中。
  • at::Tensor contents :把桶的内容展平的结果,即Flattened (1 dimensional) 之后的结果。
  • std::vector<at::Tensor> bucket_views_in :提供了从输入角度在 contents 之中查看具体梯度的方法。
  • std::vector<at::Tensor> bucket_views_out :提供了从输出角度在 contents 之中查看具体梯度的方法。

具体可以参见如下注释:

Views serve as entry points to copy_ each grad's data in/out of the flat contents tensor.

3.1 Views

关于 std::vector<at::Tensor> bucket_views_instd::vector<at::Tensor> bucket_views_out 的进一步说明:

  • 在 PyTorch 之中,视图是指创建一个方便查看的东西,视图与原数据共享内存,它只是将原有的数据进行整理,直接显示其中部分内容或者进行重排序后再显示出来。
  • 每个 view 都将按照如下布局(sizes + strides)创建,这个布局与grad的预期布局相匹配。
  • bucket_views_in 和 bucket_views_out 这两个变量提供在 contents 之中操作具体梯度的方法,或者说,它们提供了视图(views),该视图可以操作contents 之中每个张量的梯度。用户把这两个变量作为入口点来把每个梯度的数据从 content 之中移入和移出。
  • 我们为bucket_视图保留两种状态的原因是:如果注册了DDP通信钩子(communication hook), bucket_views_out 可以用钩子的 future_work值重新初始化。所以我们需要为bucket_views_in[i].copy_(grad) 保留一个对 replica 原始 contents 的单独视图引用。
  • bucket_views_in[i].copy_(grad)grad.copy_(bucket_views_out[i]) 提供了将梯度数据移入/移出contents的方便方法。

另外,以下三个成员变量存储桶的每个flat张量信息,比如offsets存储了各个张量在flat bucket contents中的offset。

// Per-variable offset/length into the flat bucket contents tensor and grad
// bucket.
std::vector<size_t> offsets;
std::vector<size_t> lengths;
// Per-variable sizes into the grad bucekt.
std::vector<c10::IntArrayRef> sizes_vec;

3.2 定义

BucketReplica 具体定义为:

// A bucket replica represents [1..N] gradients to be reduced,
// with the same dtype, on the same device.
//
// Batching gradients together before reducing them can result in lower
// overhead and/or faster time to completion. Only gradients of the same type
// and on the same device can be batched. The tensor that represents the
// flattened gradient uses the same type and is placed on the same device.
// Buckets are filled as the gradients they hold are computed (triggered by
// autograd hooks). Buckets are reduced in a predetermined order that is
// identical across processes.
struct BucketReplica {
// Flattened (1 dimensional) contents of bucket.
at::Tensor contents; // 这里打平了 // Views into contents for each grad. Each view will be created with
// layout (sizes + strides) matching the grad's expected layout
// ("Gradient Layout Contract" in torch/csrc/autograd/AccumulateGrad.h).
// `bucket_views_in[i].copy_(grad)` and
// `grad.copy_(bucket_views_out[i])`
// provide convenient ways to move grad data in/out of contents.
// The reason we keep two states for bucket_views is that if DDP
// communication hook was registered, `bucket_views_out` could be
// re-initialized with the value of hook's `future_work`. We still need to
// keep a separate view reference to replica's original contents for
// `bucket_views_in[i].copy_(grad)` call.
std::vector<at::Tensor> bucket_views_in; // 怎么从contents 之中查找
std::vector<at::Tensor> bucket_views_out; // 一个输出视图 // Variables that contribute to this bucket replica. Use refcounted value
// here so that we can easily unflatten the bucket contents into the
// participating variables after reduction has completed.
std::vector<at::Tensor> variables; // Per-variable offset/length into the flat bucket contents tensor and grad
// bucket.
std::vector<size_t> offsets;
std::vector<size_t> lengths; // Per-variable sizes into the grad bucekt.
std::vector<c10::IntArrayRef> sizes_vec; // Number of tensors to be added before this bucket is complete.
// This is reset to `variables.size()` every iteration.
size_t pending; // TODO(@pietern)
// Memory copies from gradient tensors into the bucket are potentially
// done on different CUDA streams. We record an event for every copy
// so that we can synchronize with them prior to kicking off the reduction.
// std::vector<at::cuda::CUDAEvent> events;
};

目前为止,逻辑如下,如前所述,每个bucket只有 replicas[0] 有意义。

                                    +-----------------------------------------------------+
+----------------------------+ | +-------+ +----------------------------------+ |
| Reducer | | |Bucket | |Bucket | |
| | | | | | | |
| | | | | | Future future_work | |
| vector<Bucket> buckets_ +------> | | | ... | | |
| | | | | | ProcessGroup::Work work | |
| | | | | | | |
| | | | | | vector<size_t> variable_indices | |
| | | | | | | |
| | | | | | vector<BucketReplica> replicas | |
| | | | | | + | |
| | | | | | | | |
| | | | | | | | |
+----------------------------+ | +-------+ +----------------------------------+ |
+-----------------------------------------------------+
|
|
v
+--------------------------------------------------------------+
| +---------------+ +----------------------------------+ |
| |BucketReplica | | BucketReplica | |
| | | | | |
| | | | | |
| | | | vector<Tensor> bucket_views_in | |
| | | ... | | |
| | | | vector<Tensor> bucket_views_out | |
| | | | | |
| | | | Tensor contents | |
| | | | | |
| | | | vector<Tensor> variables | |
| | | | | |
| | | | | |
| +---------------+ +----------------------------------+ |
+--------------------------------------------------------------+

3.3 初始化

部分初始化的代码在 Reducer::initialize_buckets 之中。

// Allocate bucket contents tensor. 分配内存
replica.contents = at::empty({static_cast<long>(offset)}, options); initialize_bucket_views(replica, replica.contents);

initialize_bucket_views 具体代码如下,这里需要对几个 PyTorch 函数进行说明。

  • as_strided :依据现有tensor以及给定的步长来创建一个视图(类型仍然为tensor),与原数据共享内存,不存储诗句,所以两个view都不是真实的存储,只是视图。
  • narrow :返回一个新的张量,其是原来张量的缩小版。

initialize_bucket_views 主要逻辑是:

  • 遍历replica的张量,针对每一个张量,依据其是dense还是sparse进行不同处理,最后插入到replica.bucket_views_in之中。

  • 把 replica.bucket_views_out 设置为 replica.bucket_views_in,正常应该是相等的。

  • 如果gradient_as_bucket_view_设置为true,则需要处理两种情况:

    • 当调用 rebuild_buckets 重建 bucket时,initialize_bucket_view 可以在initialize_bucket内调用,如果grad在上一次迭代中已经定义/计算过,则需要将旧的grad复制到新的bucket_view中,并让grad指向新的bucket_view。

    • initialize_bucket_view 也可以在构建时候在 initialize_bucket 内调用。在构建时间内不会定义 Grad,

      在这种情况下,不要让梯度指向bucket_view,因为对于全局未使用的参数,梯度应保持为未定义。

具体代码如下:

// (see Note:  "Gradient Layout Contract" in initialize_buckets).
void Reducer::initialize_bucket_views(
Reducer::BucketReplica& replica,
at::Tensor& contents) {
for (size_t i = 0; i < replica.variables.size(); i++) { // 遍历replica的张量
auto& v = replica.variables[i];
const auto offset = replica.offsets[i];
const auto length = replica.lengths[i];
if (v.is_non_overlapping_and_dense()) {
// If the param's memory is dense, match its layout, anticipating
// the autograd engine (AccumulateGrad) will also create gradients
// matching its layout.
replica.bucket_views_in.push_back( // dense类型
contents.as_strided(v.sizes(), v.strides(), offset));
} else {
// Fall back to a C-style contiguous view, again anticipating
// AccumulateGrad will do the same when stashing grads for non-dense
// params.
replica.bucket_views_in.push_back( // sparse类型
contents.narrow(0, offset, length).view(v.sizes()));
}
// By default `bucket_views_out` and `bucket_views_in` are
// essentially the same thing.
replica.bucket_views_out = replica.bucket_views_in; // If gradient_as_bucket_view_ is set as true, then there are two cases to
// handle: initialize_bucket_views could be called inside initialize_buckets
// when rebuild_buckets, if grad has already been defined/calculated in
// previous iteration, old grad needs to be copied into new bucket_view and
// let grad point to the new bucket_view, initialize_bucket_views could also
// be called inside initialize_buckets during construction. Grads are not
// defined during construction time, in this case, do not let grad point to
// bucket_view, because grads should be kept as being undefined for globally
// unused parameters.
if (gradient_as_bucket_view_) {
auto& bucket_view = replica.bucket_views_in.back();
runGradCallbackForVariable(v, [&](auto& grad) {
if (grad.defined() && !grad.is_alias_of(bucket_view)) {
bucket_view.copy_(grad);
grad = bucket_view;
// 梯度被修改,需要写回去
// The grad is modefied and needs to be written back.
return true;
}
// 梯度没有被修改,不需要回写
// The grad is not modified and does not need to be written back.
return false;
});
}
}
}

具体如下图:

+------------------------------------------+
| BucketReplica |
| |
| vector<Tensor> bucket_views_in +--------------------+
| | |
| | |
| vector<Tensor> bucket_views_out +--------------+ |
| | | |
| | | |
| | v v
| | +-----+----+--------------------------+
| Tensor contents +---------------------> |Flattened (Tensor1, Tensor2, Tensor3)|
| | +-------------------------------------+
| |
| |
| vector<Tensor> variables +------------> [Tensor1,Tensor2,Tensor3]
| |
| |
| |
+------------------------------------------+

另外,mark_variable_ready_sparse, mark_variable_ready_dense, finalize_backward 都有对 contents 赋值。

0x04 查询类

以下两个类用来让 autograd hook 函数确定张量对应桶。

4.1 VariableIndex

VariableIndex 就是确定某个 tensor 在某个桶中的位置。这个对于 autograd hook 有用。对于autograd hook 回调,回调函数所在进程只是知道自己的梯度张量,但是回调函数需要知道这个张量位于哪个replica,以及位于replica之中哪个位置,这样才能进一步规约。

4.1.1 成员变量

Reducer 等类的实例之中,只有一个 VariableIndex 的成员变量,这个独立成员变量是:

std::vector<VariableIndex> unused_parameters_

VariableIndex 更多是作为其他成员变量的一部分或者参数存在,比如在 Reducer 之中,gradAccToVariableMap_ 就是使用了 VaribaleIndex。

std::unordered_map<torch::autograd::Node*, VariableIndex>
gradAccToVariableMap_; // 存了grad_accumulator & index 的对应关系,这样以后在 autograd graph 寻找 unused parameters 就方便了

4.1.2 定义

VariableIndex 定义如下:

// Locates a specific variable by replica index and variable index.
struct VariableIndex {
size_t replica_index; // 位于哪个replica
size_t variable_index; // variable index,注意,不是"位于replica之中哪个位置",而是所有 varibale的index,比如一共有10个参数,variable_index 的取值是从0~9。那么"位于replica之中哪个位置"由什么来确定?由下面的 VariableLocator 确定。 VariableIndex() = default; VariableIndex(size_t replica_index_, size_t variable_index_) {
replica_index = replica_index_;
variable_index = variable_index_;
} static size_t hash(const VariableIndex& key) {
return c10::get_hash(key.replica_index, key.variable_index);
}
};

在 Reducer 的构造函数中,有如下代码用于autogrid_hook的设定,这是给每个 replica 上的每个张量设置了一个 hook。如果autograd hook 不知道此梯度对应哪个 bucket,就无法告诉 DDP,这个 bucket 整体ready了。

如何找到桶?需要使用下面的 VariableLocator。

auto& variable = replicas_[replica_index][variable_index];
const auto index = VariableIndex(replica_index, variable_index); // 生成了 VariableIndex
hooks_.emplace_back(
grad_accumulator->add_post_hook(
torch::make_unique<torch::autograd::utils::LambdaPostHook>(
[=](const torch::autograd::variable_list& outputs,
const torch::autograd::variable_list& /* unused */) {
#ifndef _WIN32
this->rpc_context_.set(
ThreadLocalDistAutogradContext::getContextPtr());
#endif
this->autograd_hook(index); // Hook的参数是 VariableIndex,目的是为了让 hook 可以顺利找到张量
return outputs;
})),
grad_accumulator);

4.2 VariableLocator

4.2.1 定义

VariableLocator 用来在 bucket 之中确定一个varaible。为了找到一个张量位置,我们需要知道在哪个桶,在桶的张量之中的哪个位置。

  • 哪个桶 : bucket_indexReducer.buckets_列表的位置,表示 buckets_ 之上的一个bucket。
  • 桶副本的哪个位置 : intra_bucket_index 是在 bucket.replica 之中 vector 域的 variable index。
// A variable locator locates a particular variable in the bucket
// structure. The `bucket_index` field points to the bucket in the `buckets_`
// vector. The `intra_bucket_index` field points to the index of the variable
// in any of the vector fields in the bucket replica.
struct VariableLocator {
// Index into the `buckets_` variable.
size_t bucket_index; // 哪个桶
// Index of parameter in single bucket replica.
size_t intra_bucket_index; // 在桶副本的哪个位置 VariableLocator() = default; VariableLocator(size_t bucket_index_, size_t intra_bucket_index_) {
bucket_index = bucket_index_;
intra_bucket_index = intra_bucket_index_;
}
};

4.2.2 成员变量

Reducer 的成员变量为:

// Map the index of a variable to its location in the bucket structure.
std::vector<VariableLocator> variable_locators_;
4.2.2.1 初始化

如何初始化?

void Reducer::initialize_buckets(
std::vector<std::vector<size_t>> bucket_indices) {
// Clear current bucket assignment.
buckets_.clear();
variable_locators_.clear();
// Ensure we have a bucket index for every variable.
variable_locators_.resize(replicas_[0].size()); // Iterate over buckets.
const auto bucket_count = bucket_indices.size();
const auto replica_count = replicas_.size();
buckets_.reserve(bucket_count); for (size_t bucket_index = 0; bucket_index < bucket_count; bucket_index++) { // 遍历桶
// Map participating variables to this bucket.
// This is identical across replicas so we only need to do this once.
size_t intra_bucket_index = 0;
for (const auto variable_index : bucket_indices[bucket_index]) { // 遍历桶里面的张量,所有桶里每个张量index 都是唯一的
variable_locators_[variable_index] =
VariableLocator(bucket_index, intra_bucket_index++); // intra_bucket_index 就是递加
}
}
}

问题:variable_locators_[variable_index] 在不同的桶之间,不会重复吗?不会,因为 VariableLocator(bucket_index, intra_bucket_index++) 从定义上看,bucket_index 和 intra_bucket_index 的组合是唯一的。

我们给出一个例子。关于 tensor indices,就是给所有的tensor一个index,从0开始递增,一直到 tensors.size()。假如模型的 parameters 一共有12个张量,则 tensor index 从 0 到 11。假如分成 6 个buckets,则在这6个buckets之中,每个 tensor index 都是唯一不重复的。

+-----------------------------------------------------------------------+
| |
| <tensor index 0, tensor index 1, tensor index 2, tensor index 3> |
| |
| |
| <tensor index 4, tensor index 5, tensor 6> |
| |
| |
| ...... |
| |
| |
| <tensor index 16, tensor index 17, tensor index 18, tensor index 19> |
| |
+-----------------------------------------------------------------------+

这样,对应的 variable_locators_ 是:

variable_locators_[tensor index 0] =  VariableLocator(bucket 0, 0),即 tensor index 0 属于 bucket 0 的 第一个variable。

variable_locators_[tensor index 1] =  VariableLocator(bucket 0, 1),即 tensor index 1 属于 bucket 0 的 第二个variable。

variable_locators_[tensor index 2] =  VariableLocator(bucket 0, 2),即 tensor index 2 属于 bucket 0 的 第三个variable。

variable_locators_[tensor index 3] =  VariableLocator(bucket 0, 3),即 tensor index 3 属于 bucket 0 的 第四个variable。
4.2.2.2 使用

如何使用?我们用下面做为例子。

当 autograd hook 调用时候,使用 VariableIndex index 来回调,

this->autograd_hook(index)

autograd_hook 最终调用到 mark_variable_ready_dense,这里进而通过 variable_locators_ 来确定桶,然后进行后续操作。

void Reducer::mark_variable_ready_dense(VariableIndex index) {
const auto replica_index = index.replica_index;
const auto variable_index = index.variable_index;
const auto& bucket_index = variable_locators_[variable_index]; // 找到张量对应的桶index
auto& bucket = buckets_[bucket_index.bucket_index]; // 找到桶
auto& replica = bucket.replicas[replica_index]; // 再通过桶找到对应的 replica
auto& variable = replica.variables[bucket_index.intra_bucket_index]; // 找到了张量
const auto offset = replica.offsets[bucket_index.intra_bucket_index]; // 找到了张量信息
const auto length = replica.lengths[bucket_index.intra_bucket_index];
auto& bucket_view = replica.bucket_views_in[bucket_index.intra_bucket_index]; // 接下来就可以继续处理了 // Copy contents of gradient tensor to bucket tensor.
// If the gradient is not set, we assume it wasn't computed
// as part of the current backwards pass, and zero the part
// of the bucket it would otherwise hold.
runGradCallbackForVariable(variable, [&](auto& grad) {
if (grad.defined()) {
this->check_grad_layout(grad, bucket_view);
// When gradient_as_bucket_view_ is false, or even when
// gradient_as_bucket_view_ is true, in rare cases users may set grad to
// be None after every iteration. In these cases, grad and bucket_view are
// pointing to different storages and thus need to copy grads to
// bucket_view. If gradient_as_bucket_view_ is set as true, let grad point
// to bucket_view. If grad has already been set as views of buckets in
// previous iterations, no copy is needed.
if (!grad.is_alias_of(bucket_view)) {
this->copy_grad_to_bucket(grad, bucket_view);
if (gradient_as_bucket_view_) {
// Let grad point to bucket_view buffer.
grad = bucket_view;
// The grad is modified and need to be written back.
return true;
}
} else {
// If grad and bucket view point to the same storage, no need to copy
if (comm_hook_ == nullptr) {
bucket_view.div_(divFactor_);
}
}
} else {
bucket_view.zero_();
}
// The grad is not modified and doesn't need to be written back.
return false;
});
}

0x05 累积相关类

以下是梯度累积相关类。

5.1 grad_accumulators_

grad_accumulators_ 可以认为是一个矩阵,矩阵的每个item就是一个 AccumulateGrad(Node类型),就是用来计算梯度的。目前看来,这里只是一个bookkeeping作用。

std::vector<std::vector<std::shared_ptr<torch::autograd::Node>>>
grad_accumulators_;

具体如下图,variable1 是一个实际的 张量,grad_accumulators_ 中的一个item 就指向 variable1 的 AccumulateGrad。

                                        variable1 +----+
|
|
v
+-----------------------------------+ +-------------+-----------+
|grad_accumulators_ | | Variable |
| | | |
| | | +------------------+ |
| [replica_index][variable_index]+---------->+ AccumulateGrad | |
| | | | | |
| | | | | |
+-----------------------------------+ | | post_hooks_+--------> autograd_hook(index)
| | | |
| | | |
| +------------------+ |
| |
+-------------------------+

5.1.1 初始化

如何初始化?在 Reducer 构建函数之中有:

  {
const auto replica_count = replicas_.size(); // 以下两个for循环会遍历所有的张量
for (size_t replica_index = 0; replica_index < replica_count;
replica_index++) { for (size_t variable_index = 0; variable_index < variable_count;
variable_index++) { auto& variable = replicas_[replica_index][variable_index];
const auto index = VariableIndex(replica_index, variable_index); // The gradient accumulator function is lazily initialized once.
// Therefore we can use its presence in the autograd graph as
// evidence that the parameter has participated in an iteration. auto grad_accumulator = // 得到一个张量的grad_accumulator
torch::autograd::impl::grad_accumulator(variable); // Hook to execute after the gradient accumulator has executed.
hooks_.emplace_back(
grad_accumulator->add_post_hook(
torch::make_unique<torch::autograd::utils::LambdaPostHook>(
[=](const torch::autograd::variable_list& outputs,
const torch::autograd::variable_list& /* unused */) {
#ifndef _WIN32
this->rpc_context_.set(
ThreadLocalDistAutogradContext::getContextPtr());
#endif
this->autograd_hook(index);
return outputs;
})),
grad_accumulator); // Map raw function pointer to replica index and parameter index.
// This is used later on when the autograd graph is traversed
// to check for parameters for which no gradient is computed, if
// find_unused_parameters=True.
// Note that the mapping of gradient accumulator to variable should be
// one to one as we deduplicate shared parameters before constructing
// Reducer.
if (find_unused_parameters_) {
gradAccToVariableMap_[grad_accumulator.get()] = index;
} numGradHooksTriggeredMap_[index] = 0; // The gradient accumulator is stored as weak_ptr in the autograd
// metadata of the variable, so we have to keep it alive here for
// the raw pointer to be valid.
grad_accumulators_[replica_index][variable_index] =
std::move(grad_accumulator); // 把这个张量的 grad_accumulator 复制到 grad_accumulators_
}
}
}

5.1.2 使用

grad_accumulator 返回的是 Node,也就是 AccumulateGrad,是一个Node类型,我们取出了检查校验代码。

std::shared_ptr<Node> grad_accumulator(const Variable& self) {
auto autograd_meta = get_autograd_meta(self); std::lock_guard<std::mutex> lock(autograd_meta->mutex_); auto result = autograd_meta->grad_accumulator_.lock();
if (result)
return result; c10::raw::intrusive_ptr::incref(self.unsafeGetTensorImpl());
auto intrusive_from_this = c10::intrusive_ptr<at::TensorImpl>::reclaim(self.unsafeGetTensorImpl());
result = std::make_shared<AccumulateGrad>(Variable(std::move(intrusive_from_this)));
autograd_meta->grad_accumulator_ = result;
return result;
}

5.2 gradAccToVariableMap_

gradAccToVariableMap_ 的定义如下:

std::unordered_map<torch::autograd::Node*, VariableIndex> gradAccToVariableMap_;

作用是给每个 Node 一个对应的VariableIndex,具体如图,下面就给 variable 1 一个 index 1:

                                                        +--------------+
| Variable |
+---> | |
| | |
| +--------------+
|
|
+-------------------------------------+ |
| gradAccToVariableMap_ | |
| | |
| | +
| <Node*, VariableIndex> +---------> [variable1 :index1, variable2 : index2]
| | +
| | |
| | |
+-------------------------------------+ |
|
v
+---------+-----------------------------+
|VariableIndex |
| |
| replica_index of Variable1 |
| |
| variable_index of Variable1 |
| |
+---------------------------------------+

5.2.1 初始化

如何初始化?在 Reducer 构造函数中有如下,就是给每个需要求导的 Varaible 一个VariableIndex。

auto& variable = replicas_[replica_index][variable_index];
const auto index = VariableIndex(replica_index, variable_index);
auto grad_accumulator = torch::autograd::impl::grad_accumulator(variable); if (find_unused_parameters_) {
gradAccToVariableMap_[grad_accumulator.get()] = index;
}

5.2.2 使用

gradAccToVariableMap_ 的使用如下,search_unused_parameters 就是遍历查找 gradAccToVariableMap_,如果某一个accumulator 函数没有在 gradAccToVariableMap_ 里面,就说明不用计算梯度。

// Traverse the autograd graph starting at the specified output.
// All parameters for which we have a pointer to their gradient accumulation
// functions, but don't show up in the autograd graph will be marked ready for
// for reduction as soon as the first autograd hook is called. This is not
// done immediately because the model output may be ignored, and we only
// want to start performing reductions on `torch.autograd.backward()`.
void Reducer::search_unused_parameters(
const std::vector<torch::autograd::Variable>& outputs) {
std::unordered_set<torch::autograd::Node*> seen;
std::vector<torch::autograd::Node*> queue; // Seed queue with the grad functions of all outputs.
for (const auto& output : outputs) {
const auto& grad_fn = output.grad_fn();
if (grad_fn) {
queue.push_back(grad_fn.get());
}
} // Traverse the autograd graph starting at the specified output.
while (!queue.empty()) {
auto fn = queue.back();
queue.pop_back();
for (const auto& edge : fn->next_edges()) {
if (auto next_ptr = edge.function.get()) {
const bool was_inserted = seen.insert(next_ptr).second;
if (was_inserted) {
queue.push_back(next_ptr);
}
}
}
} // 遍历查找,如果某一个accumulator 函数没有在这图里面,就说明不用计算梯度
// Find accumulator functions that don't show up in this graph.
for (const auto& it : gradAccToVariableMap_) {
// If the accumulator function is present in the graph, we know
// a gradient will be computed for the corresponding parameter.
if (seen.count(it.first) == 0) {
unused_parameters_.push_back(it.second);
}
}
}

5.3 numGradHooksTriggeredMap_

记录在本张量的梯度就绪之前,该张量的 autograd_hook 应该被调用几次。第一次迭代之后,不再增加,所以这个数值应该就是1或者0。用来设置 unused_parameters_ 和 配置 numGradHooksTriggeredMapPerIteration_。

// Key: VariableIndex, Value: the number of times that a variable's autograd_hook()
// should be triggered before marking this variable's grad as ready for communication.
// Map will not change after 1st iteration.
std::unordered_map<VariableIndex, int, c10::hash<VariableIndex>> numGradHooksTriggeredMap_;

5.3.1 初始化

如何初始化?在构建函数之中有:

numGradHooksTriggeredMap_[index] = 0;

第一次迭代之后,后续调用 autogrid_hook 就递增加一。

// The function `autograd_hook` is called after the gradient for a
// model parameter has been accumulated into its gradient tensor.
// This function is only to be called from the autograd thread.
void Reducer::autograd_hook(VariableIndex index) { // 省略部分代码 if (static_graph_first_iteration()) {
numGradHooksTriggeredMap_[index] += 1; // 静态图第一次迭代时候,这里会增加1
return; // 然后直接返回,注意!
} // If `find_unused_parameters_` is true there may be model parameters that
// went unused when computing the model output, they won't be part of the
// autograd graph, and won't receive gradients. These parameters are
// discovered in the `prepare_for_backward` function and their indexes stored
// in the `unused_parameters_` vector.
if (!has_marked_unused_parameters_) {
has_marked_unused_parameters_ = true;
for (const auto& unused_index : unused_parameters_) {
mark_variable_ready(unused_index);
}
} // If it is static graph, after 1st iteration, check a avariable
// is ready for communication based on numGradHooksTriggeredMap_.
if (static_graph_after_first_iteration()) {
if (--numGradHooksTriggeredMapPerIteration_[index] == 0) {
// Finally mark variable for which this function was originally called.
mark_variable_ready(index); //
}
} else {
// Finally mark variable for which this function was originally called.
mark_variable_ready(index);
}
}

5.3.2 使用

如何使用?这里会reset。

void Reducer::reset_bucket_counting() {
next_bucket_ = 0;
// Reset num_buckets_ready_ at the beginning of backward computation
// in each iteration.
num_buckets_ready_ = 0; for (auto& bucket : buckets_) {
for (auto& replica : bucket.replicas) {
replica.pending = replica.variables.size();
}
bucket.pending = bucket.replicas.size();
} if (static_graph_) {
numGradHooksTriggeredMapPerIteration_ = numGradHooksTriggeredMap_;
}
}

这里也会进行处理。如果为0,则插入unused_parameters_。

// Right now delay_all_reduce is only called when static_graph_=true and
// num_iterations_==1.
void Reducer::delay_all_reduce() { // 省略部分代码 // copy all gradients to buckets
for (size_t replica_index = 0; replica_index < replicas_.size();
replica_index++) {
for (size_t variable_index = 0; variable_index < replicas_[replica_index].size();
variable_index++) {
const auto index = VariableIndex(replica_index, variable_index);
// set unused_parameters_
if (numGradHooksTriggeredMap_[index] == 0) { // 如果为0,则插入unused_parameters_
unused_parameters_.push_back(index);
}
require_finalize_ = true;
set_divide_factor();
if (expect_sparse_gradients_[replica_index][variable_index]) {
mark_variable_ready_sparse(index);
} else {
mark_variable_ready_dense(index);
}
}
} // launch all reduces for all buckets
for (auto & bucket : buckets_) {
all_reduce_bucket(bucket);
} finalize_backward();
}

5.4 numGradHooksTriggeredMapPerIteration_

在本张量的梯度就绪之前,该张量的 autograd_hook 还需要被调用几次。如果为0,就说明这个桶应该整体就绪了。

本成员变量是使用 numGradHooksTriggeredMap_ 来重置

// Key: VariableIndex, Value: the number of times that a variable's autograd_hook()
// are left to be triggered before marking this variable's grad as ready for communication.
// Map will change after 1st iteration to track a grad is ready for communication or not.
std::unordered_map<VariableIndex, int, c10::hash<VariableIndex>> numGradHooksTriggeredMapPerIteration_;

5.4.1 使用

如何使用?在静态图情况下,如果不是第一次迭代(此时刚刚产生梯度),就会把 numGradHooksTriggeredMapPerIteration_[index] 递减,如果为0,就说明该变量就绪,可以进行集合操作梯度规约了。

// The function `autograd_hook` is called after the gradient for a
// model parameter has been accumulated into its gradient tensor.
// This function is only to be called from the autograd thread.
void Reducer::autograd_hook(VariableIndex index) { // 省略其他代码 // If it is static graph, after 1st iteration, check a avariable
// is ready for communication based on numGradHooksTriggeredMap_.
if (static_graph_after_first_iteration()) {
if (--numGradHooksTriggeredMapPerIteration_[index] == 0) {
// Finally mark variable for which this function was originally called.
mark_variable_ready(index);
}
} else {
// Finally mark variable for which this function was originally called.
mark_variable_ready(index);
}
}

当新一次迭代时候,会重置这个值,prepare_for_backward 会调用到 reset_bucket_counting。

而且是使用 numGradHooksTriggeredMap_ 来重置

void Reducer::reset_bucket_counting() {
next_bucket_ = 0;
// Reset num_buckets_ready_ at the beginning of backward computation
// in each iteration.
num_buckets_ready_ = 0; for (auto& bucket : buckets_) {
for (auto& replica : bucket.replicas) {
replica.pending = replica.variables.size();
}
bucket.pending = bucket.replicas.size();
} if (static_graph_) {
numGradHooksTriggeredMapPerIteration_ = numGradHooksTriggeredMap_;
}
}

具体逻辑我们展示一下:

  • 对于 张量 2,就没有使用过,所以 delay_all_reduce 方法 之中直接放入到未使用参数。
  • 对于 张量 1:
    • numGradHooksTriggeredMap_ 初始化是 0。
    • 第一次迭代之后变成 1。
    • 后向传播时候,调用 prepare_for_backward 和 reset_bucket_counting,把 numGradHooksTriggeredMap_赋值给 numGradHooksTriggeredMapPerIteration_
    • autograd_hook 之中会递减,然后如果是 0,就设置此变量为 ready,可以规约了。
   Variable 2

                                     delay_all_reduce

   numGradHooksTriggeredMap_[2] = 0  +---------------> unused_parameters_.push_back(0)

+----------------------------------------------------------------------------------------+

   Variable 1

    numGradHooksTriggeredMap_[1] = 0

                   +
|
| first_iteration
|
v numGradHooksTriggeredMap_[1] = 1 +
| prepare_for_backward
|
| reset_bucket_counting
v numGradHooksTriggeredMapPerIteration_ = numGradHooksTriggeredMap_
+
|
|
| backward
|
| autograd_hook
v
YES
if (++numGradHooksTriggeredMapPerIteration_[index]=== 0)?? +-------> mark_variable_ready(1)
+
| NO
|
v

5.5 perIterationReadyParams_

每个迭代之中,perIterationReadyParams_ 表示就绪的参数。

// Per iteration set of parameter indices that have been marked ready.
std::unordered_set<size_t> perIterationReadyParams_;

5.5.1 设置

就是如果某个variable是就绪状态,就插入到 perIterationReadyParams_。

void Reducer::mark_variable_ready(VariableIndex index) {

  if (should_rebuild_buckets()) {
push_rebuilt_params(index);
} const auto replica_index = index.replica_index;
const auto variable_index = index.variable_index; if (replica_index == 0) {
checkAndRaiseMarkedTwiceError(variable_index);
perIterationReadyParams_.insert(variable_index);
}
}

5.5.2 重置

在反向传播之前,会重置这个变量。

void Reducer::prepare_for_backward(
const std::vector<torch::autograd::Variable>& outputs) { // Reset per iteration marked ready parameters.
perIterationReadyParams_.clear(); }

5.5.3 使用

就是遍历perIterationReadyParams_,如果没找到,就返回。

在 rebuild_buckets 方法中会调用 ensure_prior_reduction_finished,里面会调用这两个方法来校验。

std::vector<std::string> Reducer::getUnmarkedParamsForIteration() {
std::vector<std::string> unMarkedParamNames;
for (const auto& it : param_names_) {
if (perIterationReadyParams_.find(it.first) ==
perIterationReadyParams_.end()) {
unMarkedParamNames.push_back(it.second);
}
}
return unMarkedParamNames;
} std::vector<size_t> Reducer::getUnmarkedParamIndicesForIteration() {
std::vector<size_t> unmarked_param_indices;
const auto variable_count = replicas_[0].size();
for (size_t variable_index = 0; variable_index < variable_count; variable_index++) {
if (perIterationReadyParams_.find(variable_index) == perIterationReadyParams_.end()) {
unmarked_param_indices.push_back(variable_index);
}
}
return unmarked_param_indices;
}

5.6 使用过的参数

以下两个变量用来记录本地使用过的参数,其标示在未启用同步的情况下(no_sync is on),在当前迭代或者 no_sync session 之中,这些参数是否在本地被使用过。

每个模型副本对应map中的一个张量,每个张量是参数数量的一维int32(one-dim int32)张量。

这些张量在autograd_hook中标记,以指示已使用了相应的参数。这些张量会在当前迭代或无同步会话(no_sync session)的后向传播结束时进行allreduce,以计算出全局未使用的参数。

// Locally used parameter maps indicating if parameters are used locally
// during the current iteration or no_sync session if no_sync is on. One
// tensor for each model replica and each tensor is one-dim int32 tensor of
// number of parameters. These tensors are marked in autograd_hook to indicate
// the corresponding param has been used, and get allreduced in the end of
// backward of current iteration or no_sync session for figuring out the
// globally unused parameters.
//
// local_used_maps_: CPU tensors for bookkeeping locally used params
// local_used_maps_dev_: dev tensors for reducing globally unused params
std::vector<at::Tensor> local_used_maps_; // autograd_hook中会设置,对应论文中的
std::vector<at::Tensor> local_used_maps_dev_; // GPU

5.6.1 论文

此处可以结合论文看看。

全局未使用参数(Globally Unused Parameters)的梯度在向前和向后过程中应保持不变。检测未使用的参数需要全局信息,因为在一个DDP过程中,一个参数可能在一次操作中不存在,但可能在另一个过程的同一次迭代中参与训练。因此DDP在位图中维护本地未使用的参数信息,并启动额外的AllReduce以收集全局位图。由于位图比张量尺寸小得多,因此模型中的所有参数共享同一位图,而不是创建每桶位图(per-bucket bitmaps)。位图位于CPU上,以避免为每次更新启动专用CUDA内核。但是,某些ProcessGroup后端可能无法在CPU 张量上运行AllReduce。例如,ProcessGroupNCCL仅支持CUDA张量。此外,由于DDP应该与任何定制的ProcessGroup后端一起工作,它不能假设所有后端都支持CPU张量。为了解决这个问题,DDP在同一设备上维护另一个位图作为第一个模型参数,并调用非阻塞拷贝操作(non-blocking copy)将CPU位图移动到设备位图以进行集合通信

5.6.2 初始化

初始化函数如下:

void Reducer::initialize_local_used_map() {
const auto replica_count = replicas_.size();
const auto variable_count = replicas_[0].size();
local_used_maps_.resize(replica_count);
local_used_maps_dev_.resize(replica_count); for (size_t i = 0; i < replica_count; i++) {
at::TensorOptions options;
options = options.dtype(at::kInt); // Deliberately don't pin the memory even if local_used_maps_dev_ will
// be cuda. See Note [local_used_maps_ -> local_used_maps_dev copying]
local_used_maps_[i] =
at::zeros({static_cast<long>(variable_count)}, options); // This tensor needs to be on the same device as replica because backend
// such as NCCL may not support CPU tensors, and hence it might not work
// if we always put it on CPU.
options = options.device(replicas_[i][0].device());
local_used_maps_dev_[i] =
at::empty({static_cast<long>(variable_count)}, options);
}
}

5.6.3 重置

finalize_bucket_dense 和 finalize_backward 都会重置。

void Reducer::finalize_backward() {
if (dynamic_graph_find_unused()) {
// Reset unused parameter accounting.
// See Note [local_used_maps_ -> local_used_maps_dev copying]
for (auto& local_used : local_used_maps_) {
local_used.fill_(0);
}
local_used_maps_reduced_ = false;
}

5.6.4 设置

autograd_hook 之中如果使用了,就设置为1

void Reducer::autograd_hook(VariableIndex index) {

  // 在这里会记录,已经使用了。
// See Note [Skip allreducing local_used_maps_dev]
if (dynamic_graph_find_unused() || static_graph_first_iteration()) {
// Since it gets here, this param has been used for this iteration. We want
// to mark it in local_used_maps_. During no_sync session, the same var can
// be set multiple times, which is OK as does not affect correctness. As
// long as it is used once during no_sync session, it is marked as used.
local_used_maps_[index.replica_index][index.variable_index] = 1;
}

5.6.5 使用

在 mark_variable_ready 时候会调用到 all_reduce_local_used_map,如果需要同步,这里进行同步。我们还是翻译一下注释:

  • DDP 用异步H2D来避免阻塞开销。异步复制和allreduce 会着眼于当前流,因此将正确排序。

  • 关于主机操作的正确顺序也很重要。H2D copy_ 是按流排序的,而主机对 local_used_maps_ 的更改是按主机排序的。

  • 如果大量积压的cuda流工作将 copy_ 操作推迟到将来,并且如果从现在到finalize_backward 之间没有发生阻塞调用,那么finalize_backward 会在流执行复制之前将主机上使用的本地映射重新归零,在这种情况下,copy_会读取到这些零,而不是我们在这里告诉它读取的值。

  • 将 local_used_maps_[i] 复制到pinned临时内存(固定的缓存分配器应该异步提供)可以避免这种恶劣的、罕见的争用情况。

  • 在希望使用所有参数的情况下,从现在到重新调零,DDP本身不会做任何阻塞工作,因此这种危险情况是真实存在的。

  • 所以,Reducer 采用防御性操作,以确保 local_used_maps_tmp 与local_used_maps_[i] 不同。

void Reducer::all_reduce_local_used_map() {
// See Note [Skip allreducing local_used_maps_dev]
// H2D from local_used_maps_ to local_used_maps_dev_
for (size_t i = 0; i < local_used_maps_.size(); i++) {
if (local_used_maps_dev_[i].is_cuda()) {
// Note [local_used_maps_ -> local_used_maps_dev copying]
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
// We do async H2D to avoid the blocking overhead. The async copy and
// allreduce respect the current stream, so will be sequenced
// correctly.
//
// Correct sequencing with respect to host operations is also
// essential. The H2D copy_ is stream ordered, while the host's
// changes to local_used_maps_ are host ordered. If a large backlog of
// cuda-stream work pushes the copy_ far into the future, and if no
// blocking calls occur between now and finalize_backward()** such
// that finalize_backward() re-zeroes local_used_maps_ on the host
// before the stream executes the copy_, copy_ will read those zeros
// instead of the values we thought we told it to read here. Copying
// local_used_maps_[i] to a pinned temporary (which the pinned caching
// allocator should supply asynchronously) avoids this nasty, rare
// race condition.
//
// ** In the hoped-for case where all params are used, DDP itself
// won't do any blocking work between now and the re-zeroing, so the
// danger is real.
//
// Defensively ensures local_used_maps_tmp is distinct from
// local_used_maps_[i]
auto local_used_maps_tmp = at::native::empty_like(
local_used_maps_[i],
optTypeMetaToScalarType(local_used_maps_[i].options().dtype_opt()),
local_used_maps_[i].options().layout_opt(),
local_used_maps_[i].options().device_opt(),
true /* pinned_memory */);
// Paranoid asserts here because in some workloads, the pinned
// allocator behaves in a way we don't understand, and may be bugged.
// See https://github.com/pytorch/pytorch/pull/54474
TORCH_INTERNAL_ASSERT(local_used_maps_tmp.is_pinned());
TORCH_INTERNAL_ASSERT(
local_used_maps_tmp.data_ptr() != local_used_maps_[i].data_ptr());
local_used_maps_tmp.copy_(local_used_maps_[i]);
local_used_maps_dev_[i].copy_(local_used_maps_tmp, true);
} else {
local_used_maps_dev_[i].copy_(local_used_maps_[i], true);
}
}
local_used_work_ = process_group_->allreduce(local_used_maps_dev_);
}

5.7 计算梯度支撑类

我们接下来分析一些计算梯度所涉及到的基本函数和支撑类。

5.7.1 RpcContext

该类用来封装 distributed::autograd::ContextPtr。

struct RpcContext {
using ContextPtr = torch::distributed::autograd::ContextPtr;
// The shared_ptr is to hold the context instance.
ContextPtr context_ptr_holder;
std::atomic<ContextPtr::element_type*> context_ptr{nullptr}; void set(ContextPtr&& new_context_ptr);
};
RpcContext rpc_context_;

5.7.2 hooks_

其作用就是保持了 autograd hook,也是起到了bookkeeping 作用。

std::vector<std::pair<uintptr_t, std::shared_ptr<torch::autograd::Node>>>
hooks_;

初始化如下:

        // Hook to execute after the gradient accumulator has executed.
hooks_.emplace_back(
grad_accumulator->add_post_hook(
torch::make_unique<torch::autograd::utils::LambdaPostHook>(
[=](const torch::autograd::variable_list& outputs,
const torch::autograd::variable_list& /* unused */) {
#ifndef _WIN32
this->rpc_context_.set(
ThreadLocalDistAutogradContext::getContextPtr());
#endif
this->autograd_hook(index);
return outputs;
})),
grad_accumulator);

5.7.3 comm_hook_

5.7.3.1 概念

我们通过 [DDP Communication Hook] 来看看概念。

DDP通信钩子是一种增强功能,它提供了一个钩子,其可用于覆盖DDP来进行跨rank梯度通信,这可用于梯度压缩/GossipGrad等算法。可以使用Python API register_comm_hook来注册钩子函数。

如果未注册DDP通信钩子(DDP communication hook),则reducer只需调用allreduce即可对桶进行规约。如果注册了,则会调用钩子并使用future work handle来处理。如果注册,reducer也会跳过"将梯度除以世界大小(world size)" 这个步骤。这样做的目的是:通信钩子可以完全覆盖我们执行通信的方式,用户可以完全控制如何处理梯度。

PythonCommHookCommHookInterface的子类,其可以注册一个 Python 钩子。此外,还有一些内置的C++钩子实现,可以通过调用Python API register_builtin_comm_hook来指定。

// Note [DDP Communication Hook]
// ~~~~~~~~~~~~~~~~~~~~~~~~~~
// If DDP communication hook is not registered, the reducer reduces the buckets
// by just calling allreduce. If registered, it calls the hook and uses future
// work handle. If registered, reducer also skips dividing grads by world size.
// The reason for this is that the communication hook is expected to completely
// override how we perform communication and the user should have complete
// control over how the grads are handled.
//
// DDP communication hook is an enhancement that provides a hook which can be
// used to override how DDP communicates gradients across ranks, this can be
// used for algorithms like Gradient Compression/GossipGrad. This hook can be
// registered from Python API using `register_comm_hook`. `PythonCommHook`
// enables registering a Python hook and is a subclass of `CommHookInterface`.
// Additionally, there are also some built-in C++ hook implementations that can
// be specified by calling `register_builtin_comm_hook` from Python API.
5.7.3.2 使用

我们通过 torch/distributed/algorithms/ddp_comm_hooks/default_hooks.py 来看看。

下面的 hook 就是在 all-reduce 前后进行自己的特殊处理。如果使用这个 hook,就使用 ddp_model.register_comm_hook(process_group, fp16_compress_hook)。

def fp16_compress_hook(
process_group: dist.ProcessGroup, bucket: dist.GradBucket
) -> torch.futures.Future:
"""
This DDP communication hook implements a simple gradient compression
approach that casts ``GradBucket`` tensors to half-precision floating-point format (``torch.float16``)
and then divides it by the process group size.
It allreduces those ``float16`` gradient tensors. Once compressed gradient
tensors are allreduced, the chained callback ``decompress`` casts it back to the input data type (such as ``float32``). Example::
>>> ddp_model.register_comm_hook(process_group, fp16_compress_hook)
"""
group_to_use = process_group if process_group is not None else dist.group.WORLD
world_size = group_to_use.size() compressed_tensor = bucket.get_tensor().to(torch.float16).div_(world_size) fut = dist.all_reduce(
compressed_tensor, group=group_to_use, async_op=True
).get_future() def decompress(fut):
decompressed_tensor = bucket.get_tensor()
# Decompress in place to reduce the peak memory.
# See: https://github.com/pytorch/pytorch/issues/45968
decompressed_tensor.copy_(fut.value()[0])
return [decompressed_tensor] return fut.then(decompress)

5.7.4 runGradCallbackForVariable

mark_variable_ready_dense 函数会调用到 runGradCallbackForVariable。

5.7.4.1 Reducer

Reducer的runGradCallbackForVariable如下,其调用 distributed::autograd::ContextPtr.runGradCallbackForVariable 来处理。

void Reducer::runGradCallbackForVariable(
at::Tensor& variable,
GradCallback&& cb) {
// 加载rpc context
auto context_ptr = rpc_context_.context_ptr.load();
if (context_ptr == nullptr) {
cb(variable.mutable_grad());
} else {
// Under distributed autograd
#ifndef _WIN32
// 下面分析
context_ptr->runGradCallbackForVariable(variable, std::move(cb));
#endif
}
}
5.7.4.2 DistAutogradContext

我们顺着来到 DistAutogradContext

它会在累积的梯度之中,在 accumulatedGrads_ 之中找到张量 对应的梯度 grad,然后用传入的回调函数来处理梯度grad,最后把处理后的梯度拷贝回accumulatedGrads_。这样就从 hook获取梯度 开始,到传回规约之后的梯度结束,完成了一个闭环

void DistAutogradContext::runGradCallbackForVariable(
const torch::autograd::Variable& variable,
GradCallback&& cb) {
torch::Tensor grad;
{
std::lock_guard<std::mutex> guard(lock_);
auto it = accumulatedGrads_.find(variable); // 找到张量 对应的梯度 grad
TORCH_INTERNAL_ASSERT(
it != accumulatedGrads_.end(),
"The grad for the variable should exist in dist_autograd context.");
grad = it->value();
}
if (cb(grad)) { // 用传入的回调函数来处理梯度grad
std::lock_guard<std::mutex> guard(lock_);
auto device = grad.device();
// Needs to update the grad in the map.
accumulatedGrads_.insert_or_assign(variable, std::move(grad)); //最后把处理后的梯度拷贝回accumulatedGrads_
recordGradEvent(device);
}
}

DistAutogradContext 的 accumulatedGrads_会记录张量对应的当前梯度。

// DistAutogradContext which stores information for a single distributed
// autograd pass on a worker.
class TORCH_API DistAutogradContext {
public:
// Gradients accumulated in this context so far. The key is the variable on
// which the gradient needs to be accumulated and the value is the gradient
// that needs to be accumulated on that variable..
c10::Dict<torch::Tensor, torch::Tensor> accumulatedGrads_;
}

至此,我们初步介绍了一些基本类,下一章继续介绍(是在是太多了......)。

0xFF 参考

pytorch分布式系列3——分布式训练时,torch.utils.data.distributed.DistributedSampler做了什么?

pytorch分布式系列1——搞清torch.distributed.launch相关的环境变量

pytorch分布式系列2——DistributedDataParallel是如何做同步的?

pytorch(分布式)数据并行个人实践总结——DataParallel/DistributedDataParallel

Pytorch的nn.DataParallel

https://discuss.pytorch.org/t/dataparallel-imbalanced-memory-usage/22551/20

https://pytorch.org/docs/stable/distributed.html

PyTorch 源码解读之分布式训练了解一下?

实操教程|PyTorch AutoGrad C++层实现

PYTORCH 自动微分(一)

PyTorch如何加速数据并行训练?分布式秘籍大揭秘

pytorch分布式训练(二init_process_group)

https://pytorch.org/tutorials/intermediate/ddp_tutorial.html

https://pytorch.org/docs/master/notes/ddp.html

https://pytorch.org/tutorials/intermediate/dist_tuto.html

PyTorch 源码解读之 DP & DDP:模型并行和分布式训练解析

Pytorch模型中的parameter与buffer

[源码解析] PyTorch 分布式(10)------DistributedDataParallel 之 Reducer静态架构的更多相关文章

  1. [源码解析] PyTorch 分布式(11) ----- DistributedDataParallel 之 构建Reducer

    [源码解析] PyTorch 分布式(11) ----- DistributedDataParallel 之 构建Reducer 目录 [源码解析] PyTorch 分布式(11) ----- Dis ...

  2. [源码解析] PyTorch 分布式(12) ----- DistributedDataParallel 之 前向传播

    [源码解析] PyTorch 分布式(12) ----- DistributedDataParallel 之 前向传播 目录 [源码解析] PyTorch 分布式(12) ----- Distribu ...

  3. [源码解析] PyTorch 分布式(13) ----- DistributedDataParallel 之 反向传播

    [源码解析] PyTorch 分布式(13) ----- DistributedDataParallel 之 反向传播 目录 [源码解析] PyTorch 分布式(13) ----- Distribu ...

  4. [源码解析] PyTorch分布式(5) ------ DistributedDataParallel 总述&如何使用

    [源码解析] PyTorch 分布式(5) ------ DistributedDataParallel 总述&如何使用 目录 [源码解析] PyTorch 分布式(5) ------ Dis ...

  5. [源码解析] PyTorch分布式(6) -------- DistributedDataParallel -- 初始化&store

    [源码解析] PyTorch分布式(6) ---DistributedDataParallel -- 初始化&store 目录 [源码解析] PyTorch分布式(6) ---Distribu ...

  6. [源码解析] PyTorch 分布式(8) -------- DistributedDataParallel之论文篇

    [源码解析] PyTorch 分布式(8) -------- DistributedDataParallel之论文篇 目录 [源码解析] PyTorch 分布式(8) -------- Distrib ...

  7. [源码解析] PyTorch 分布式(9) ----- DistributedDataParallel 之初始化

    [源码解析] PyTorch 分布式(9) ----- DistributedDataParallel 之初始化 目录 [源码解析] PyTorch 分布式(9) ----- DistributedD ...

  8. [源码解析] PyTorch 分布式(7) ----- DistributedDataParallel 之进程组

    [源码解析] PyTorch 分布式(7) ----- DistributedDataParallel 之进程组 目录 [源码解析] PyTorch 分布式(7) ----- DistributedD ...

  9. [源码解析] PyTorch 分布式之弹性训练(4)---Rendezvous 架构和逻辑

    [源码解析] PyTorch 分布式之弹性训练(4)---Rendezvous 架构和逻辑 目录 [源码解析] PyTorch 分布式之弹性训练(4)---Rendezvous 架构和逻辑 0x00 ...

随机推荐

  1. ApacheCon 首次亚洲大会火热来袭,SphereEx 邀您共赴年度盛会!

    ApacheCon 是 Apache 软件基金会(ASF)的官方全球系列大会.作为久负盛名的开源盛宴,ApacheCon 在开源界备受关注,也是开源运动早期的知名活动之一. ApacheCon 每年举 ...

  2. Rigidbody钢体移动时抖动问题

    Rigidbody移动时抖动问题 撞墙抖动 Unity中物体移动有非常多的方式: 比如: transform.position += dir*speed*Time.deltaTime; transfo ...

  3. [spring-rabbit]自动配置原理

    1 一个简单的示例 在Spring Boot项目中使用spring-rabbit时,需要经过以下几个步骤: 引入依赖. 配置基本连接信息. 创建消息发布者,并发送消息. 创建消息消费者,监听消息并处理 ...

  4. Netty 进阶

    1. 粘包与半包 1.1 粘包现象 服务端代码 public class HelloWorldServer { static final Logger log = LoggerFactory.getL ...

  5. vue基本指令与脚手架基本配置

    脚手架(@vue/cli)创建项目启动服务 1.创建项目 vue create 项目名字 2.启动项目 进入项目根目录,运行以下命令 yarn serve 3.脚手架目录代码分析 ├── node_m ...

  6. [对对子队]会议记录5.16(Scrum Meeting3)

    今天已完成的工作 何瑞 ​ 工作内容:搭建关卡5.6,优化之前的成本系统 ​ 相关issue:搭建关卡4.5.6 ​ 相关签入:feat: 第五第六关搭建完成 吴昭邦 ​ 工作内容:搭建关卡5.6 ​ ...

  7. 使用Mybatis的TypeHandler加解密数据

    使用Mybatis的TypeHandler加解密数据 一.背景 二.解决方案 三.需求 四.实现思路 1.编写一个实体类,凡是此实体类的数据都表示需要加解密的 2.编写一个加解密的`TypeHandl ...

  8. 【行人惯性导航】关于行人导航中IMU位姿推导的知识点及相关代码

    IMU姿态惯性推导 最近从事行人惯性导航的研究,本人也是一个小白,其中看了很多文献,有很多个人思考很费时间的地方,撰写此随笔的目的不仅是给自己做一个笔记,也是给各位有需要的仁兄一点个人理解. 本文只关 ...

  9. 链表分割 牛客网 程序员面试金典 C++ Python

    链表分割 牛客网 程序员面试金典 C++ Python 题目描述 编写代码,以给定值x为基准将链表分割成两部分,所有小于x的结点排在大于或等于x的结点之前 给定一个链表的头指针 ListNode* p ...

  10. 双链路接入(双出口)isp运营商(负载分担)

    USG作为校园或大型企业出口网关可以实现内网用户通过两个运营商访问Internet,并保护内网不受网络攻击. 组网需求 某学校网络通过USG连接到Internet,校内组网情况如下: 校内用户主要分布 ...