NOIP 模拟 $30\; \rm 毛一琛$
题解 \(by\;zj\varphi\)
如何判断一个集合可以被拆成两个相等的部分?
枚举两个集合,如果它们的和相等,那么他们的并集就是合法的,复杂度 \(\mathcal O\rm(3^n)\)
\(\rm\;meet\;in\;the\;middle\) 优化,将序列分成两段,枚举第一段的每个数加到哪个集合,用 \(\rm hash\) 表存一下。
在后半部分扫完后,再扫前面的每个集合,得到答案。
复杂度 \(\mathcal O\rm (3^\frac{n}{2}+6^\frac{n}{2})\)
Code
#include<bits/stdc++.h>
#define ri register signed
#define p(i) ++i
namespace IO{
char buf[1<<21],*p1=buf,*p2=buf;
#define gc() p1==p2&&(p2=(p1=buf)+fread(buf,1,1<<21,stdin),p1==p2)?(-1):*p1++
struct nanfeng_stream{
template<typename T>inline nanfeng_stream &operator>>(T &x) {
ri f=1;x=0;register char ch=gc();
while(!isdigit(ch)) {if (ch=='-') f=0;ch=gc();}
while(isdigit(ch)) {x=(x<<1)+(x<<3)+(ch^48);ch=gc();}
return x=f?x:-x,*this;
}
}cin;
}
using IO::cin;
namespace nanfeng{
#define FI FILE *IN
#define FO FILE *OUT
template<typename T>inline T cmax(T x,T y) {return x>y?x:y;}
template<typename T>inline T cmin(T x,T y) {return x>y?y:x;}
static const int N=25;
int a[N],hl,al,ans,n;
bool vs[N],vis[1<<10][1<<10];
struct Hash{
static const int MOD=1e8+7;
int first[MOD],t=1;
struct edge{int w,st,nxt;}e[(int)6e5];
inline int MD(int x) {return x>=MOD?x-MOD:x;}
inline void insert(int x,int st) {
int hd=MD(x%MOD+MOD);
for (ri i(first[hd]);i;i=e[i].nxt) if (e[i].st==st&&e[i].w==x) return;
e[t].w=x,e[t].st=st,e[t].nxt=first[hd],first[hd]=t++;
}
inline int query(int x,int st) {
int hd=MD(x%MOD+MOD),res(0);
for (ri i(first[hd]);i;i=e[i].nxt) {
if (e[i].w!=x||vis[e[i].st][st]) continue;
vis[e[i].st][st]=1;
p(res);
}
return res;
}
}H;
void dfs1(int x,int w) {
if (x==hl+1) {
ri st(vs[1]);
for (ri i(2);i<=hl;p(i)) st=st<<1|vs[i];
H.insert(w,st);
return;
}
vs[x]=0;
dfs1(x+1,w);
vs[x]=1;
dfs1(x+1,w+a[x]);
dfs1(x+1,w-a[x]);
}
void dfs2(int x,int w) {
if (x==n+1) {
ri st(0);
for (ri i(hl+1);i<=n;p(i)) st=st<<1|vs[i];
ans+=H.query(w,st);
return;
}
vs[x]=0;
dfs2(x+1,w);
vs[x]=1;
dfs2(x+1,w+a[x]);
dfs2(x+1,w-a[x]);
}
inline int main() {
//FI=freopen("nanfeng.in","r",stdin);
//FO=freopen("nanfeng.out","w",stdout);
cin >> n;
for (ri i(1);i<=n;p(i)) cin >> a[i];
hl=n>>1;
al=n-hl;
dfs1(1,0);
dfs2(hl+1,0);
printf("%d\n",ans-1);
return 0;
}
}
int main() {return nanfeng::main();}
NOIP 模拟 $30\; \rm 毛一琛$的更多相关文章
- NOIP 模拟 $30\; \rm 毛二琛$
题解 \(by\;zj\varphi\) 原题问的就是对于一个序列,其中有的数之间有大小关系限制,问有多少种方案. 设 \(dp_{i,j}\) 表示在前 \(i\) 个数中,第 \(i\) 个的排名 ...
- NOIP 模拟 $30\; \rm 毛三琛$
题解 \(by\;zj\varphi\) 二分答案,考虑二分背包中的最大值是多少. 枚举 \(p\) 的值,在当前最优答案不优时,直接跳掉. 随机化一下 \(p\),这样复杂度会有保证. Code # ...
- noip模拟30[毛毛毛探探探]
\(noip模拟30\;solutions\) 所以说,这次被初中的大神给爆了????? 其实真的不甘心,这次考场上的遗憾太多,浪费的时间过多,心情非常不好 用这篇题解来结束这场让人伤心的考试吧 \( ...
- NOIP模拟3
期望得分:30+90+100=220 实际得分:30+0+10=40 T1智障错误:n*m是n行m列,硬是做成了m行n列 T2智障错误:读入三个数写了两个%d T3智障错误:数值相同不代表是同一个数 ...
- 7.22 NOIP模拟7
又是炸掉的一次考试 T1.方程的解 本次考试最容易骗分的一道题,但是由于T2花的时间太多,我竟然连a+b=c都没判..暴力掉了40分. 首先a+b=c,只有一组解. 然后是a=1,b=1,答案是c-1 ...
- NOIP模拟 1
NOIP模拟1,到现在时间已经比较长了.. 那天是6.14,今天7.18了 //然鹅我看着最前边缺失的模拟1,还是终于忍不住把它补上,为了保持顺序2345重新发布了一遍.. # 用 户 名 ...
- 2021.5.22 noip模拟1
这场考试考得很烂 连暴力都没打好 只拿了25分,,,,,,,,好好总结 T1序列 A. 序列 题目描述 HZ每周一都要举行升旗仪式,国旗班会站成一整列整齐的向前行进. 郭神作为摄像师想要选取其中一段照 ...
- NOIP 模拟 $22\; \rm f$
题解 \(by\;zj\varphi\) 对于一个数,如果它二进制下第 \(i\) 位为 \(1\),那么 \(\rm x\) 在这一位选 \(1\) 的贡献就是和它不同的最高为为 \(i\) 的数的 ...
- Noip模拟30 2021.8.4
T1 毛一琛 考场上打的稳定的$O((2^n)^2)$的暴力.其实再回忆一下上次那道用二进制枚举的题$y$ 就可以知道一样的道理,使用$\textit{Meet In the Middle}$, 按照 ...
随机推荐
- [小技巧] gcc 编译选项-###
原文译至:http://elinux.org/GCC_Tips 的一小部分. -###编译选项用于查看编译的过程 gcc -### <你的命令行的其他部分放在这里> 你运行的GCC其是一系 ...
- JUnit5的条件测试、嵌套测试、重复测试
条件测试 JUnit5支持条件注解,根据布尔值判断是否执行测试. 自定义条件 @EnabledIf和@DisabledIf注解用来设置自定义条件,示例: @Test @EnabledIf(" ...
- 「CF643G」 Choosing Ads
「CF643G」 Choosing Ads 传送门 如果你知道摩尔投票法可以扩展事实上是个一眼题,又好写又好调. 首先摩尔投票法是用来求众数定义为超过所有数个数一半的数的一个算法. 大致算法流程: 将 ...
- 【动画消消乐】HTML+CSS 自定义加载动画 062
效果展示 Demo代码 HTML <!DOCTYPE html> <html lang="en"> <head> <meta charse ...
- deepin解压乱码
使用unzip命令解压:unzip -O GBK xxxx.zip -d xxx
- python -- 模块与类库
一.模块 模块(Module)是由一组类.函数和变量组成的,模块文件的扩展名是.py或.pyc 在使用模块之前,需要先使用import语句导入这个模块. 语法格式如下: import 模块名 from ...
- 从源码构建Vim
从源码构建Vim 引言 事情是介样滴,因为我是个Vim 重度使用者了差不多.. 但在大部分系统上能安装到的或者自带的都是比较老的版本,可能是7.x 之类的.也或者是你需要使用到Vim 的某些特性或者功 ...
- ML - 常用数学符号
关系运算符: ±:\pm ×:\times ÷:\div ∣:\mid ∤:\nmid ⋅:\cdot ∘:\circ ∗:\ast ⨀:\bigodot ⨂:\bigotimes ⨁:\bigopl ...
- POJ1417 True Liars 题解
通过读题,容易发现,当回答为yes时 \(x,y\) 必属于同类,当回答为no时二者必为异类(并且当 \(x=y\) 时,回答必为yes,不过这题不用这个性质). 于是先按关系维护连通块,然后求出每个 ...
- Nginx负载均衡反向代理服务器
1.第一步先在IIS中创建多个网站,分别用不同的端口号.这里创建两个网站端口号分别8084.8085,在Nginx配置中会用到.测试两个网站能正常访问. 2.配置Nginx 1)增加负载均衡请求列表 ...