• 最小生成树(MST)是图论中的基本问题,具有广泛的实际应用,在数学建模中也经常出现。
  • 路线设计、道路规划、官网布局、公交路线、网络设计,都可以转化为最小生成树问题,如要求总线路长度最短、材料最少、成本最低、耗时最小。
  • 最小生成树的典型算法有普里姆算法(Prim算法)和克鲁斯卡算法(Kruskal算法).
  • 本文基于 NetworkX 工具包,通过例程详细介绍最小生成树问题的求解。
  • 『Python小白的数学建模课 @ Youcans』带你从数模小白成为国赛达人。

1. 最小生成树

1.1 生成树

树是图论中的基本概念。连通的无圈图称为树(Tree),就是不包含循环的回路的连通图。

对于无向连通图,如下图所示,生成树(Spanning tree)是原图的极小连通子图,它包含原图中的所有 n 个顶点,并且有保持图连通的最少的边,即只有足以构成一棵树的 n-1 条边。

生成树满足:(1)包含连通图中所有的顶点;(2)任意两顶点之间有且仅有一条通路。因此,生成树中边的数量 = 顶点数 - 1。

对于非连通无向图, 遍历每个连通分量中的顶点集合所经过的边是多颗生成树,这些连通分量的生成树构成非连通图的生成森林 。

1.2 最小生成树和最大生成树

遍历连通图的方式通常有很多种,也就是说一张连通图可能有多种不同的生成树。

无向赋权图的生成树中,各条边的权重之和最小的生成树,称为最小生成树(minimum spanning tree,MST),也称最小权重生成树。

对应地,各条边的权重之和最大的生成树,称为最大生成树(maximum spanning tree)。

1.3 最小生成树问题

最小生成树(MST)是图论中的基本问题,具有广泛的实际应用,在数学建模中也经常出现。

例如,在若干城市之间铺设通信线路,使任意两个城市之间都可以通信,要使铺设线路的总费用最低,就需要找到最小生成树。类似地,路线设计、道路规划、官网布局、公交路线、网络设计,都可以转化为最小生成树问题,如要求总线路长度最短、材料最少、成本最低、耗时最小等。

在实际应用中,不仅要考虑网络连通,还要考虑连通网络的质量和效率,就形成了带有约束条件的最小生成树:

直径限制最小生成树(Bounded diameter minimum spanning tree):对给定的连通图,满足直径限制的生成树中,具有最小权的树,称为直径限制最小生成树。直径限制最小生成树问题在资源优化问题中应用广泛,如网络设计的网络直径影响到网络的传输速度、效率和能耗。

度限制最小生成树(Degree constrained minimum spanning tree):对给定的连通图,满足某个节点或全部节点的度约束(如入度不超过 k)的生成树中,具有最小权的树,称为度限制最小生成树。实际应用中,为了控制节点故障对整个系统的影响,需要对节点的度进行限制。


2. 最小生成树算法

构造最小生成树的算法很多,通常是从空树开始,按照贪心法逐步选择并加入 n-1 条安全边(不产生回路),最终得到最小生成树。

最小生成树的典型算法有普里姆算法(Prim算法)和克鲁斯卡算法(Kruskal算法)。

2.1 普里姆算法(Prim算法)

Prim 算法以顶点为基础构造最小生成树,每个顶点只与连通图连接一次,因此不用考虑在加入顶点的过程中是否会形成回路。

算法从某一个顶点 s 开始,每次选择剩余的代价最小的边所对应的顶点,加入到最小生成树的顶点集合中,逐步扩充直到包含整个连通网的所有顶点,可以称为“加点法”。

Prim 算法中图的存贮结构采用邻接矩阵,使用一个顶点集合 u 构造最小生成树。由于不断向集合u中加点,还需要建立一个辅助数组来同步更新最小代价边的信息。

Prim 算法每次选择顶点时,都需要进行排序,但每次都只需要对一部分边进行排序。Prim 算法的时间复杂度为 O(n*n),与边的数量无关,适用于边很多的稠密图。

采用堆实现优先队列来维护最小点,可以将Prim算法的时间复杂度降低到 O(mlogn),称为Prim_heap 算法,但该算法的空间消耗很大。

2.2 克鲁斯卡算法(Kruskal算法)

Kruskal 算法以边为基础构造最小生成树,利用避圈思想,每次找到不使图构成回路的代价最小的边。

算法初始边数为 0,每次选择一条满足条件的最小代价边,加入到边集合中,逐步扩充直到包含整个生成树,可以称为“加边法”。

Kruskal 算法中图的存贮结构采用边集数组,权值相等的边在数组中的排列次序是任意的。Kruskal算法开始就要对所有的边进行排序,之后还需要对所有边应用 Union-Find算法,但不再需要排序。

Kruskal 算法的时间复杂度为 O(mlogm),主要是对边排序的时间复杂度,适用于边较少的稀疏图。


3. NetworkX 的最小生成树算法

3.1 NetworkX 的最小/最大生成树函数

函数 功能
minimum_spanning_tree(G[, weight,...]) 计算无向图上的最小生成树
maximum_spanning_tree(G[, weight,...]) 计算无向图上的最大生成树
minimum_spanning_edges(G[, algorithm,...]) 计算无向加权图最小生成树的边
maximum_spanning_edges(G[, algorithm,...]) 计算无向加权图最大生成树的边

3.2 minimum_spanning_tree() 使用说明

minimum_spanning_tree(G, weight='weight', algorithm='kruskal', ignore_nan=False)

minimum_spanning_edges(G, algorithm='kruskal', weight='weight', keys=True, data=True, ignore_nan=False)

minimum_spanning_tree() 用于计算无向连通图的最小生成树(森林)。minimum_spanning_edges() 用于计算无向连通图的最小生成树(森林)的边。

对于连通无向图,计算最小生成树;对于非连通无向图,计算最小生成森林。

主要参数:

  • G(undirected graph):无向图。
  • weight(str):指定用作计算权重的边属性。
  • algorithm(string):计算最小生成树的算法,可选项为 'kruskal'、'prim' 或 'boruvka'。默认算法为 'kruskal'。
  • data(bool):指定返回值是否包括边的权值。
  • ignore_nan(bool) :在边的权重为 Nan 时产生异常。

返回值:

  • minimum_spanning_tree() 的返回值是由最小生成树构成的图,类型为 NetworkX Graph,需要用 T.edges() 获得对应的最小生成树的边。
  • minimum_spanning_edges() 的返回值是最小生成树的构成边,类型为<class 'generator'>,需要用 list() 转换为列表数据。

3.3 案例:天然气管道铺设问题

问题描述:

某市区有 7个小区需要铺设天然气管道,各小区的位置及可能的管道路线、费用如图所示,要求设计一个管道铺设路线,使天然气能输送到各个小区,且铺设管道的总费用最小。

程序说明:

这是一个最小生成树问题,用 NetworkX 的 minimum_spanning_tree() 函数即可求出费用最小的管道路线。

  1. 图的输入。本例为稀疏的有权无向图,使用 G.add_weighted_edges_from() 函数以列表向图中添加多条赋权边,每个赋权边以元组 (node1,node2,weight) 表示。
  2. nx.minimum_spanning_tree() 和 nx.tree.minimum_spanning_edges() 都可以计算最小生成树,参数设置和属性也基本一致,区别主要在于返回值的格式和调用方式。

Python 例程:

# mathmodel18_v1.py
# Demo18 of mathematical modeling algorithm
# Demo of minimum spanning tree(MST) with NetworkX
# Copyright 2021 YouCans, XUPT
# Crated:2021-07-10 import numpy as np
import matplotlib.pyplot as plt # 导入 Matplotlib 工具包
import networkx as nx # 导入 NetworkX 工具包 # 1. 天然气管道铺设
G1 = nx.Graph() # 创建:空的 无向图
G1.add_weighted_edges_from([(1,2,5),(1,3,6),(2,4,2),(2,5,12),(3,4,6),
(3,6,7),(4,5,8),(4,7,4),(5,8,1),(6,7,5),(7,8,10)]) # 向图中添加多条赋权边: (node1,node2,weight) T = nx.minimum_spanning_tree(G1) # 返回包括最小生成树的图
print(T.nodes) # 最小生成树的 顶点
print(T.edges) # 最小生成树的 边
print(sorted(T.edges)) # 排序后的 最小生成树的 边
print(sorted(T.edges(data=True))) # data=True 表示返回值包括边的权重 mst1 = nx.tree.minimum_spanning_edges(G1, algorithm="kruskal") # 返回最小生成树的边
print(list(mst1)) # 最小生成树的 边
mst2 = nx.tree.minimum_spanning_edges(G1, algorithm="prim",data=False) # data=False 表示返回值不带权
print(list(mst2)) # 绘图
pos={1:(1,5),2:(3,1),3:(3,9),4:(5,5),5:(7,1),6:(6,9),7:(8,7),8:(9,4)} # 指定顶点位置
nx.draw(G1, pos, with_labels=True, node_color='c', alpha=0.8) # 绘制无向图
labels = nx.get_edge_attributes(G1,'weight')
nx.draw_networkx_edge_labels(G1,pos,edge_labels=labels, font_color='m') # 显示边的权值
nx.draw_networkx_edges(G1,pos,edgelist=T.edges,edge_color='b',width=4) # 设置指定边的颜色
plt.show()

程序运行结果:

[1, 2, 3, 4, 5, 6, 7, 8]
[(1, 2), (1, 3), (2, 4), (4, 7), (4, 5), (5, 8), (6, 7)]
[(1, 2), (1, 3), (2, 4), (4, 5), (4, 7), (5, 8), (6, 7)]
[(1, 2, {'weight': 5}), (1, 3, {'weight': 6}), (2, 4, {'weight': 2}), (4, 5, {'weight': 8}), (4, 7, {'weight': 4}), (5, 8, {'weight': 1}), (6, 7, {'weight': 5})]
[(5, 8, {'weight': 1}), (2, 4, {'weight': 2}), (4, 7, {'weight': 4}), (1, 2, {'weight': 5}), (6, 7, {'weight': 5}), (1, 3, {'weight': 6}), (4, 5, {'weight': 8})]
[(1, 2), (2, 4), (4, 7), (7, 6), (1, 3), (4, 5), (5, 8)]

4. 案例:建设通信网络

4.1 问题描述

在 n 个城市架设 n-1 条线路,建设通信网络。任意两个城市之间都可以建设通信线路,且单位长度的建设成本相同。求建设通信网络的最低成本的线路方案。

(1)城市数\(n\geq10\),由键盘输入;

(2)城市坐标 x, y 在(0~100)之间随机生成;

(3)输出线路方案的各段线路及长度。

4.2 程序说明

  1. 这是一个典型的最小生成树问题。n 个城市构成图的 n 个顶点,任意两个顶点之间都有连接边,边的权值是两个顶点的间距。
  2. nx.complete_graph(n) 可以创建一个全连接图,即任意两个顶点之间都有连接边。

4.3 Python 例程

# mathmodel18_v1.py
# Demo18 of mathematical modeling algorithm
# Demo of minimum spanning tree(MST) with NetworkX
# Copyright 2021 YouCans, XUPT
# Crated:2021-07-10 import numpy as np
import matplotlib.pyplot as plt # 导入 Matplotlib 工具包
import networkx as nx # 导入 NetworkX 工具包
from scipy.spatial.distance import pdist, squareform # # 2. 城市通信网络建设
# nCities = input("Input number of cities (n>=10):")
# nCities = int(nCities)
nCities = 20
np.random.seed(1)
xPos = np.random.randint(0, 100, nCities) # 生成 [0,100) 均匀分布的随机整数
yPos = np.random.randint(0, 100, nCities) # 生成 Ncities 个城市坐标 posCity = []
G2 = nx.complete_graph(nCities) # 创建:全连接图
for node in G2.nodes():
G2.add_node(node, pos=(xPos[node], yPos[node])) # 向节点添加位置属性 pos
posCity.append(G2.nodes[node]["pos"]) # 获取节点位置属性 pos dist = squareform(pdist(np.array(posCity))) # 计算所有节点之间的距离
for u, v in G2.edges:
G2.add_edge(u, v, weight=np.round(dist[u][v],decimals=1)) # 向边添加权值 dist(u,v) T = nx.minimum_spanning_tree(G2, algorithm='kruskal') # 返回包括最小生成树的图
print("\n城市位置:\n",G2._node)
print("\n通信网络:\n",sorted(T.edges(data=True))) # data=True 表示返回值包括边的权重
# mst = nx.tree.minimum_spanning_edges(G2, algorithm="kruskal") # 返回最小生成树的边
# for edge in sorted(list(mst)):
# print(edge) fig, ax = plt.subplots(figsize=(8, 6))
node_pos = nx.get_node_attributes(G2, 'pos') # 顶点位置
nx.draw(G2,node_pos,with_labels=True,node_color='c',edge_color='silver',node_size=300,font_size=10,font_color='r',alpha=0.8) # 绘制无向图
# nx.draw_networkx_labels(G2, node_pos, labels=node_pos, font_size=6, horizontalalignment='left', verticalalignment='top') # 绘制顶点属性:位置坐标 pos
# edge_col = ['red' if edge in T.edges() else 'silver' for edge in G2.edges()] # 设置边的颜色
# nx.draw_networkx_edges(G2, node_pos, edge_color=edge_col, width=2) # 设置指定边的颜色
nx.draw_networkx_edges(G2, node_pos, edgelist=T.edges, edge_color='r', width=2) # 设置指定边的颜色
edge_weight = nx.get_edge_attributes(T, 'weight') # 边的权值
nx.draw_networkx_edge_labels(T, node_pos, edge_labels=edge_weight, font_size=8, font_color='m', verticalalignment='top') # 显示边的权值
plt.axis('on') # Remove the axis
plt.xlim(-5, 100)
plt.ylim(-5, 100)
plt.show()

4.4 运行结果

城市位置:
{0: {'pos': (37, 29)}, 1: {'pos': (12, 14)}, 2: {'pos': (72, 50)}, 3: {'pos': (9, 68)}, 4: {'pos': (75, 87)}, 5: {'pos': (5, 87)}, 6: {'pos': (79, 94)}, 7: {'pos': (64, 96)}, 8: {'pos': (16, 86)}, 9: {'pos': (1, 13)}, 10: {'pos': (76, 9)}, 11: {'pos': (71, 7)}, 12: {'pos': (6, 63)}, 13: {'pos': (25, 61)}, 14: {'pos': (50, 22)}, 15: {'pos': (20, 57)}, 16: {'pos': (18, 1)}, 17: {'pos': (84, 0)}, 18: {'pos': (11, 60)}, 19: {'pos': (28, 81)}} 通信网络:
[(0, 1, {'weight': 29.2}), (0, 14, {'weight': 14.8}), (0, 15, {'weight': 32.8}), (1, 9, {'weight': 11.0}), (1, 16, {'weight': 14.3}), (2, 4, {'weight': 37.1}), (2, 14, {'weight': 35.6}), (3, 8, {'weight': 19.3}), (3, 12, {'weight': 5.8}), (4, 6, {'weight': 8.1}), (4, 7, {'weight': 14.2}), (5, 8, {'weight': 11.0}), (8, 19, {'weight': 13.0}), (10, 11, {'weight': 5.4}), (10, 17, {'weight': 12.0}), (11, 14, {'weight': 25.8}), (12, 18, {'weight': 5.8}), (13, 15, {'weight': 6.4}), (15, 18, {'weight': 9.5})]


【本节完】

版权声明:

欢迎关注『Python小白的数学建模课 @ Youcans』原创作品

原创作品,转载必须标注原文链接:(https://www.cnblogs.com/youcans/category/1981091.html)。

Copyright 2021 Youcans, XUPT

Crated:2021-07-12

欢迎关注 『Python小白的数学建模课 @ Youcans』,每周更新数模笔记

Python小白的数学建模课-01.新手必读

Python小白的数学建模课-02.数据导入

Python小白的数学建模课-03.线性规划

Python小白的数学建模课-04.整数规划

Python小白的数学建模课-05.0-1规划

Python小白的数学建模课-06.固定费用问题

Python小白的数学建模课-07.选址问题

Python小白的数学建模课-09.微分方程模型

Python小白的数学建模课-10.微分方程边值问题

Python小白的数学建模课-12.非线性规划

Python小白的数学建模课-15.图论的基本概念

Python小白的数学建模课-16.最短路径算法

Python小白的数学建模课-17.条件最短路径

Python小白的数学建模课-18.最小生成树问题

Python小白的数学建模课-B2.新冠疫情 SI模型

Python小白的数学建模课-B3.新冠疫情 SIS模型

Python小白的数学建模课-B4.新冠疫情 SIR模型

Python小白的数学建模课-B5.新冠疫情 SEIR模型

Python小白的数学建模课-B6.改进 SEIR疫情模型

Python小白的数学建模课-18.最小生成树问题的更多相关文章

  1. Python小白的数学建模课-19.网络流优化问题

    流在生活中十分常见,例如交通系统中的人流.车流.物流,供水管网中的水流,金融系统中的现金流,网络中的信息流.网络流优化问题是基本的网络优化问题,应用非常广泛. 网络流优化问题最重要的指标是边的成本和容 ...

  2. Python小白的数学建模课-A3.12 个新冠疫情数模竞赛赛题与点评

    新冠疫情深刻和全面地影响着社会和生活,已经成为数学建模竞赛的背景帝. 本文收集了与新冠疫情相关的的数学建模竞赛赛题,供大家参考,欢迎收藏关注. 『Python小白的数学建模课 @ Youcans』带你 ...

  3. Python小白的数学建模课-07 选址问题

    选址问题是要选择设施位置使目标达到最优,是数模竞赛中的常见题型. 小白不一定要掌握所有的选址问题,但要能判断是哪一类问题,用哪个模型. 进一步学习 PuLP工具包中处理复杂问题的字典格式快捷建模方法. ...

  4. Python小白的数学建模课-17.条件最短路径

    条件最短路径问题,指带有约束条件.限制条件的最短路径问题.例如: 顶点约束,包括必经点或禁止点的限制: 边的约束,包括必经路段.禁行路段和单向路段:无权路径长度的限制,如要求经过几步或不超过几步到达终 ...

  5. Python小白的数学建模课-04.整数规划

    整数规划与线性规划的差别只是变量的整数约束. 问题区别一点点,难度相差千万里. 选择简单通用的编程方案,让求解器去处理吧. 『Python小白的数学建模课 @ Youcans』带你从数模小白成为国赛达 ...

  6. Python小白的数学建模课-05.0-1规划

    0-1 规划不仅是数模竞赛中的常见题型,也具有重要的现实意义. 双十一促销中网购平台要求二选一,就是互斥的决策问题,可以用 0-1规划建模. 小白学习 0-1 规划,首先要学会识别 0-1规划,学习将 ...

  7. Python小白的数学建模课-06 固定费用问题

    Python 实例介绍固定费用问题的建模与求解. 学习 PuLP工具包中处理复杂问题的快捷使用方式. 『Python小白的数学建模课 @ Youcans』带你从数模小白成为国赛达人. 前文讲到几种典型 ...

  8. Python小白的数学建模课-B5. 新冠疫情 SEIR模型

    传染病的数学模型是数学建模中的典型问题,常见的传染病模型有 SI.SIR.SIRS.SEIR 模型. 考虑存在易感者.暴露者.患病者和康复者四类人群,适用于具有潜伏期.治愈后获得终身免疫的传染病. 本 ...

  9. Python小白的数学建模课-16.最短路径算法

    最短路径问题是图论研究中的经典算法问题,用于计算图中一个顶点到另一个顶点的最短路径. 在图论中,最短路径长度与最短路径距离却是不同的概念和问题,经常会被混淆. 求最短路径长度的常用算法是 Dijkst ...

随机推荐

  1. 一千个不用 Null 的理由!

    港真,Null 貌似在哪里都是个头疼的问题,比如 Java 里让人头疼的 NullPointerException,为了避免猝不及防的空指针异常,千百年来程序猿们不得不在代码里小心翼翼的各种 if 判 ...

  2. Cobbler自动部署装机 轻松解决装机烦恼

    Cobbler自动部署装机一.实验准备二.搭建步骤1.导入epel源2.安装Cobbler以及其相关服务软件包3.修改Cobbler 主配置文件4.启动相关服务并关闭防火墙和selinux5.使用co ...

  3. 夏壹队——nabcd

    我们团队项目名称是TD校园通,无课表查询你作为主要功能,是一个亮眼的功能. 我们的无课表查询功能主要解决大家平时上自习还要到教学楼拍照,教室课程情况也有断更的时候,而这个功能就解决大家的这个功能,能够 ...

  4. 两人团队项目-石家庄地铁查询系统(web版)psp表

    结对开发_石家庄地铁查询_博客地址:https://www.cnblogs.com/Aduorisk/p/10652917.html 队友:冯利伟 PSP: PSP0 Personal Softwar ...

  5. keeplived+mycat+mysql高可用读写分离水平分表(谁看谁都会)

    一:环境准备: 应用 主机 mysql-master 192.168.205.184 mysql-slave 192.168.205.185 mycat-01,keeplived,jdk 192.16 ...

  6. Spring总结之事务

    Spring事务 1)定义 事务是指多个操作单元组成的集合,多个操作单元是整体不可分割的,要么都成功,要么都不成功.必须遵守四个原则(ACID) ●原子性(Atomicity):即事务是不可分割的最小 ...

  7. 40.qt quick- 高仿微信实现局域网聊天V4版本(支持gif动图表情包、消息聊天、拖动缩放窗口)

    在上章37.qt quick- 高仿微信实现局域网聊天V3版本(添加登录界面.UDP校验登录.皮肤更换.3D旋转),我们已经实现了: 添加登录界面. UDP校验登录. 皮肤更换. 3D旋转(主界面和登 ...

  8. 痞子衡嵌入式:i.MXRT1010, 1170型号上不一样的SNVS GPR寄存器读写控制设计

    大家好,我是痞子衡,是正经搞技术的痞子.今天痞子衡给大家介绍的是i.MXRT1010, 1170型号上不一样的SNVS GPR寄存器读写控制设计. 痞子衡之前两篇文章 <在SBL项目实战中妙用i ...

  9. python内置函数--- hasattr、setattr、getattr

    1.描述 hasattr() 函数用于判断对象是否包含对应的属性. 语法 hasattr 语法: hasattr(object, name) 2.描述 setattr() 函数对应函数 getattr ...

  10. Jmeter关联详解

    关联的概念 从上一步操作中获取需要的值,传递给下一步操作中进行引用,形成自动关联,而不是 每次操作都去手动修改关联的值.常见的场景有SessionID.Session Token值的获取. 正则表达式 ...