Go的Channel发送和接收
先来看一道面试题:
对已经关闭的 chan 进行读写,会怎么样?为什么?
在上一篇学习 Go 协程的文章中,知道 go 关键字可以用来开启一个 goroutine 进行任务处理,但多个任务之间如果需要通信,就需要用到通道(channel)了。
一、Channel的定义
声明并初始化一个通道,可以使用 Go 语言的内建函数 make
,同时指定该通道类型的元素类型,下面声明了一个 chan int 类型的 channel:
ch := make(chan int)
二、Channel的操作
发送(写):发送操作包括了“复制元素值”和“放置副本到通道内部”这两个步骤。即:进入通道的并不是操作符右边的那个元素值,而是它的副本。
ch := make(chan int)
// write to channel
ch <- x
接收(读):接收操作包含了“复制通道内的元素值”、“放置副本到接收方”、“删掉原值”三个步骤。
ch := make(chan int)
// read from channel
x <- ch
// another way to read
x = <- ch
关闭:关闭 channel 会产生一个广播机制,所有向 channel 读取消息的 goroutine 都会收到消息。
ch := make(chan int)
close(ch)
从一个已关闭的 channel 中读取消息永远不会阻塞,并且会返回一个为 false 的 ok-idiom,可以用它来判断 channel 是否关闭:
v, ok := <-ch
如果 ok 是false,表明接收的 v 是产生的零值,这个 channel 被关闭了或者为空。
三、Channel发送和接收操作的特点
一个通道相当于一个先进先出(FIFO)的队列:也就是说,通道中的各个元素值都是严格地按照发送的顺序排列的,先被发送通道的元素值一定会先被接收。
对于同一个通道,发送操作之间和接收操作之间是互斥的:同一时刻,对同一通道发送多个元素,直到这个元素值被完全复制进该通道之后,其他针对该通道的发送操作才可能被执行。接收也是如此。
发送操作和接收操作中,对元素值的处理是不可分割的:前面我们知道发送一个值到通道,是先复制值,再将该副本移动到通道内部,“不可分割”指的是发送操作要么还没复制元素值,要么已经复制完毕,绝不会出现只复制了一部分的情况。接收也是同理,在准备好元素值的副本之后,一定会删除掉通道中的原值,绝不会出现通道中仍有残留的情况。
发送操作和接收操作在完全完成之前会被阻塞:发送操作包括了“复制元素值”和“放置副本到通道内部”这两个步骤。在这两个步骤完全完成之前,发起这个发送操作的那句代码会一直阻塞在那里,在它之后的代码不会有执行的机会,直到阻塞解除。
四、Channel的类型
channel 分为不带缓存的 channel 和带缓存的 channel。
使用 make
声明一个通道类型变量时,除了指定通道的元素类型,还可以指定通道的容量,也就是通道最多可以缓存多少个元素值,当容量为 0 时,该通道为非缓冲通道,当容量大于 0 时,该通道为带有缓冲的通道。
ch := make(chan int) //无缓冲的channel
ch := make(chan int, 3) //带缓冲的channel
非缓冲通道和缓冲通道有着不同的数据传递方式:
- 非缓冲通道:无论是发送操作还是接收操作,一开始执行就会被阻塞,直到配对的操作也开始执行,才会继续传递。即:只有收发双方对接上了,数据才会被传递。数据直接从发送方复制到接收方。非缓冲通道传递数据的方式是同步的。
- 缓冲通道:如果通道已满,对它的所有发送操作都会被阻塞,直到通道中有元素值被接收走。反之,如果通道已空,那么对它的所有接收操作都会被阻塞,直到通道中有新的元素值出现。元素值会先从发送方复制到缓冲通道,之后再由缓冲通道复制给接收方。缓冲通道传递数据的方式是异步的。
五、Channel的源码学习
Channel 的主要实现在 src/runtime/chan.go
中,go 版本为 go version go1.14.6 darwin/amd64
这里主要看 chansend
如何实现的。
func chansend(c *hchan, ep unsafe.Pointer, block bool, callerpc uintptr) bool {
if c == nil {
if !block {
return false
}
gopark(nil, nil, waitReasonChanSendNilChan, traceEvGoStop, 2)
throw("unreachable")
}
if debugChan {
print("chansend: chan=", c, "\n")
}
if raceenabled {
racereadpc(c.raceaddr(), callerpc, funcPC(chansend))
}
// Fast path: check for failed non-blocking operation without acquiring the lock.
//
// After observing that the channel is not closed, we observe that the channel is
// not ready for sending. Each of these observations is a single word-sized read
// (first c.closed and second c.recvq.first or c.qcount depending on kind of channel).
// Because a closed channel cannot transition from 'ready for sending' to
// 'not ready for sending', even if the channel is closed between the two observations,
// they imply a moment between the two when the channel was both not yet closed
// and not ready for sending. We behave as if we observed the channel at that moment,
// and report that the send cannot proceed.
//
// It is okay if the reads are reordered here: if we observe that the channel is not
// ready for sending and then observe that it is not closed, that implies that the
// channel wasn't closed during the first observation.
if !block && c.closed == 0 && ((c.dataqsiz == 0 && c.recvq.first == nil) ||
(c.dataqsiz > 0 && c.qcount == c.dataqsiz)) {
return false
}
var t0 int64
if blockprofilerate > 0 {
t0 = cputicks()
}
lock(&c.lock)
if c.closed != 0 {
unlock(&c.lock)
panic(plainError("send on closed channel"))
}
if sg := c.recvq.dequeue(); sg != nil {
// Found a waiting receiver. We pass the value we want to send
// directly to the receiver, bypassing the channel buffer (if any).
send(c, sg, ep, func() { unlock(&c.lock) }, 3)
return true
}
if c.qcount < c.dataqsiz {
// Space is available in the channel buffer. Enqueue the element to send.
qp := chanbuf(c, c.sendx)
if raceenabled {
raceacquire(qp)
racerelease(qp)
}
typedmemmove(c.elemtype, qp, ep)
c.sendx++
if c.sendx == c.dataqsiz {
c.sendx = 0
}
c.qcount++
unlock(&c.lock)
return true
}
if !block {
unlock(&c.lock)
return false
}
// Block on the channel. Some receiver will complete our operation for us.
gp := getg()
mysg := acquireSudog()
mysg.releasetime = 0
if t0 != 0 {
mysg.releasetime = -1
}
// No stack splits between assigning elem and enqueuing mysg
// on gp.waiting where copystack can find it.
mysg.elem = ep
mysg.waitlink = nil
mysg.g = gp
mysg.isSelect = false
mysg.c = c
gp.waiting = mysg
gp.param = nil
c.sendq.enqueue(mysg)
gopark(chanparkcommit, unsafe.Pointer(&c.lock), waitReasonChanSend, traceEvGoBlockSend, 2)
// Ensure the value being sent is kept alive until the
// receiver copies it out. The sudog has a pointer to the
// stack object, but sudogs aren't considered as roots of the
// stack tracer.
KeepAlive(ep)
// someone woke us up.
if mysg != gp.waiting {
throw("G waiting list is corrupted")
}
gp.waiting = nil
gp.activeStackChans = false
if gp.param == nil {
if c.closed == 0 {
throw("chansend: spurious wakeup")
}
panic(plainError("send on closed channel"))
}
gp.param = nil
if mysg.releasetime > 0 {
blockevent(mysg.releasetime-t0, 2)
}
mysg.c = nil
releaseSudog(mysg)
return true
}
从代码中可以看到:
有 goroutine 阻塞在 channel recv 队列上,此时缓存队列为空,直接将消息发送给 reciever goroutine,只产生一次复制。
当 channel 缓存队列有剩余空间时,将数据放到队列里,等待接收,接收后总共产生两次复制。
当 channel 缓存队列已满时,将当前 goroutine 加入 send 队列并阻塞。
所以,开头的面试题就有了答案:
读:
读已经关闭的 chan,能一直读到内容,但是读到的内容根据通道内关闭前是否有元素而不同。
如果 chan 关闭前,buffer 内有元素还未读,会正确读到 chan 内的值,且返回的第二个 bool 值为 true;
如果 chan 关闭前,buffer 内有元素已经被读完,chan 内无值,返回 channel 元素的零值,第二个 bool 值为 false。
写:
写已经关闭的 chan 会 panic。
Go的Channel发送和接收的更多相关文章
- Netty——高级发送和接收数据handler处理器
netty发送和接收数据handler处理器 主要是继承 SimpleChannelInboundHandler 和 ChannelInboundHandlerAdapter 一般用netty来发送和 ...
- RabbitMQ 简单的消息发送与接收
RabbitMQ是建立在AMQP(Advanced Message Queuing Protocol,高级消息队列协议)基础上的,而AMQP是建立在TCP协议之上的. 因此,RabbitMQ是需要建立 ...
- Spring Cloud (十五)Stream 入门、主要概念与自定义消息发送与接收
前言 不写随笔的日子仿佛就是什么都没有产出一般--上节说到要学Spring Cloud Bus,这里发现按照官方文档的顺序反而会更好些,因为不必去后边的章节去为当前章节去打基础,所以我们先学习Spri ...
- netty发送和接收数据handler处理器
netty发送和接收数据handler处理器 主要是继承 SimpleChannelInboundHandler 和 ChannelInboundHandlerAdapter 一般用netty来发送和 ...
- bluedroid源代码分析之ACL包发送和接收(一)
很多其它内容请參照我的个人网站: http://stackvoid.com/ ACL 链路在 Bluetooth 中很重要,一些重要的应用如 A2DP, 基于 RFCOMM 的应用,BNEP等都要建立 ...
- L2CAP数据发送和接收
ACL 链路在 Bluetooth 中非常重要,一些重要的应用如 A2DP, 基于 RFCOMM 的应用.BNEP等都要建立 ACL 链路,发送/接收ACL 包.跟大家一起来分析 ACL 包发送/接收 ...
- Java邮件发送与接收原理
一. 邮件开发涉及到的一些基本概念 1.1.邮件服务器和电子邮箱 要在Internet上提供电子邮件功能,必须有专门的电子邮件服务器.例如现在Internet很多提供邮件服务的厂商:sina.sohu ...
- (转载)JavaWeb学习总结(五十一)——邮件的发送与接收原理
博客源地址:http://www.cnblogs.com/xdp-gacl/p/4209586.html 一. 邮件开发涉及到的一些基本概念 1.1.邮件服务器和电子邮箱 要在Internet上提供电 ...
- JavaWeb学习总结(五十一)——邮件的发送与接收原理
一. 邮件开发涉及到的一些基本概念 1.1.邮件服务器和电子邮箱 要在Internet上提供电子邮件功能,必须有专门的电子邮件服务器.例如现在Internet很多提供邮件服务的厂商:sina.sohu ...
随机推荐
- 使用Docker的同学注意了,这10个坑小心中招了
Docker容器优点容器已经成为企业IT基础设施中必不可少的部分,它具有许多的优点,比如: 1 容器是不可变的--操作系统,库版本,配置,文件夹和应用程序都包装在容器内.你保证在质量检查中测试过的同一 ...
- Elasticsearch-04-master选举
3.2 master选举机制 3.2.1 选举算法 1)bully算法 核心思想 假定所有的节点都具有一个可以比较的ID,通过比较这个ID来选举master 流程说明 节点向所有比自己ID大的节点发送 ...
- java网络编程基础——基本网络支持
基本网络支持 java.net包主要为网络编程提供支持. 1.InetAddress InetAddress类代表IP地址,还有两个子类:Inet4Address.Inet6Address. pack ...
- PAT乙级:1087 有多少不同的值 (20分)
PAT乙级:1087 有多少不同的值 (20分) 当自然数 n 依次取 1.2.3.--.N 时,算式 ⌊n/2⌋+⌊n/3⌋+⌊n/5⌋ 有多少个不同的值?(注:⌊x⌋ 为取整函数,表示不超过 x ...
- 剑指offer-子树结构
描述 输入两棵二叉树A,B,判断B是不是A的子结构.(ps:我们约定空树不是任意一个树的子结构) 求解思路: 首先肯定是找到树A中等于树B根节点的节点. A和B按照同样的遍历顺序比较,如果全相同A ...
- odoo里面context用法
原文转自:https://www.cnblogs.com/zhaoweihang/p/9698852.html <field name="partner_id" string ...
- windows10激活方法
原文转自:http://www.ylmfwin100.com/ylmf/8643.html 现在市面上大致有两种主流激活方法,一种是通过激活码来激活,另外一种是通过激活工具来激活.但是激活工具有个弊端 ...
- couchdb(5984)未授权访问
启动环境 测试 poc地址 https://github.com/vulhub/vulhub/blob/master/couchdb/CVE-2017-12636/exp.py map -p 5984 ...
- 升级vs更新,用词莫忘准确(附PHP版本升级教程)
升级vs更新 Web技术日新月异,更新升级是维护工作之一,长时间不更新(升级)的程序,就如长时间不维护的建筑物一样,会加速老化.功能逐渐缺失直至无法使用.而我们最近发现,有的朋友对"更新&q ...
- 使用html2canvas.js将HTML生成图片
<!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...