分析:

后面的环能不能取下来与前面的环有关,前面的环不被后面的环所影响。所以先取最后面的环

设状态F(n)表示n个环全部取下来的最少步数

先取第n个环,就得使1~n-2个环属于被取下来的状态,第n-1个环属于未被取下来的状态。那么F(n) = F(n-2) + 1 + ... (这里的1表示取下第n个需要一步)

即F(n)可以为F(n-2) + 1与某些数的和。取下n后,1~n-2为取下的状态,n-1为未被取下的状态。如果我们想取下n-1,那么n-2要为未被取下来的状态且1~n-3为被取下的状态。

但是这里不能直接将n-2变成为未取下的状态,你想把n-2的状态改变,就得使n-3为未被取下来的状态且1~n-4为被取下的状态;你想把n-3的状态改变,就得使n-4为未被取下来的状态且1~n-5为被取下的状态.

这个一直递推下去你要使1~n-2全部属于未被取下的状态才能继续取n-1。

将1~n全部取下来有下列四步

第一步:取1~n-2,需要F(n-2)步

第二步:取第n个,需要1步

第三步:恢复1~n-2,需要F(n-2)步 (取下来的最少步数和恢复的最少步数是一样的,它们是对称的)

第四步:将1~n-1个全部取下来

所以:F(n) = F(n-1) + 2*F(n-2) + 1

矩阵快速幂套模板啦!

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std; typedef long long ll;
const int Mod = 200907;
const int N = 5;
int msize; struct Mat
{
int mat[N][N];
}; Mat operator *(Mat a, Mat b)
{
Mat c;
memset(c.mat, 0, sizeof(c.mat));
for(int k = 0; k < msize; ++k)
for(int i = 0; i < msize; ++i)
if(a.mat[i][k])
for(int j = 0; j < msize; ++j)
if(b.mat[k][j])
c.mat[i][j] = ((ll)a.mat[i][k] * b.mat[k][j] + c.mat[i][j])%Mod;
return c;
} Mat operator ^(Mat a, int k)
{
Mat c;
memset(c.mat,0,sizeof(c.mat));
for(int i = 0; i < msize; ++i)
c.mat[i][i]=1;
for(; k; k >>= 1)
{
if(k&1) c = c*a;
a = a*a;
}
return c;
} int main()
{
int n;
msize = 3;
Mat A;
A.mat[0][0] = 1, A.mat[0][1] = 2, A.mat[0][2] = 1;
A.mat[1][0] = 1, A.mat[1][1] = 0, A.mat[1][2] = 0;
A.mat[2][0] = 0, A.mat[2][1] = 0, A.mat[2][2] = 1;
while(~scanf("%d",&n) && n)
{
if(n==1)
{
puts("1");
continue;
}
Mat ans = A^(n-2);
printf("%d\n", (ans.mat[0][0]*2 + ans.mat[0][1] + ans.mat[0][2])%Mod);
}
return 0;
}

hdu 2842 Chinese Rings 矩阵快速幂的更多相关文章

  1. HDU 2842 (递推+矩阵快速幂)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2842 题目大意:棒子上套环.第i个环能拿下的条件是:第i-1个环在棒子上,前i-2个环不在棒子上.每个 ...

  2. HDU 2842 Chinese Rings(矩阵高速功率+递归)

    职务地址:HDU 2842 这个游戏是一个九连环的游戏. 如果当前要卸下前n个环.由于要满足前n-2个都卸下,所以要先把前n-2个卸下.须要f(n-2)次.然后把第n个卸下须要1次,然后这时候要卸下第 ...

  3. HDU.1575 Tr A ( 矩阵快速幂)

    HDU.1575 Tr A ( 矩阵快速幂) 点我挑战题目 题意分析 直接求矩阵A^K的结果,然后计算正对角线,即左上到右下对角线的和,结果模9973后输出即可. 由于此题矩阵直接给出的,题目比较裸. ...

  4. hdu 3117 Fibonacci Numbers 矩阵快速幂+公式

    斐波那契数列后四位可以用快速幂取模(模10000)算出.前四位要用公式推 HDU 3117 Fibonacci Numbers(矩阵快速幂+公式) f(n)=(((1+√5)/2)^n+((1-√5) ...

  5. HDU 2842 Chinese Rings( 递推关系式 + 矩阵快速幂 )

    链接:传送门 题意:解 N 连环最少步数 % 200907 思路:对于 N 连环来说,解 N 连环首先得先解 N-2 连环然后接着解第 N 个环,然后再将前面 N-2 个环放到棍子上,然后 N 连环问 ...

  6. hdu 2604 Queuing(矩阵快速幂乘法)

    Problem Description Queues and Priority Queues are data structures which are known to most computer ...

  7. HDU 5950 - Recursive sequence - [矩阵快速幂加速递推][2016ACM/ICPC亚洲区沈阳站 Problem C]

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5950 Farmer John likes to play mathematics games with ...

  8. 2013长春网赛1009 hdu 4767 Bell(矩阵快速幂+中国剩余定理)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4767 题意:求集合{1, 2, 3, ..., n}有多少种划分情况bell[n],最后结果bell[ ...

  9. HDU 6470 Count 【矩阵快速幂】(广东工业大学第十四届程序设计竞赛 )

    题目传送门:http://acm.hdu.edu.cn/showproblem.php?pid=6470 Count Time Limit: 6000/3000 MS (Java/Others)    ...

随机推荐

  1. 下载: www.bitmover.com/lmbench,最新版本3.0-a9

    软件说明: lmbench是个用于评价系统综合性能的多平台开源benchmark,能够测试包括文档读写.内存操作.进程创建销毁开销.网络等性能,测试方法简单.Lmbench是个多平台软件,因此能够对同 ...

  2. mysql基础之mariadb概念

    一.数据库介绍 什么是数据库(Database)? 简单的说,数据库就是一个存放数据的仓库,这个仓库是按照一定的数据结构(数据结构是指数据的组织形式或数据之间的联系)来组织,存储的,我们可以通过数据库 ...

  3. Lombok 插件安装和使用

    引言 以前的 Java 项目中,充斥着太多毫无技术含量的代码,比如类属性的 getter/setter/toString 方法,还有就是异常处理.I/O 流的关闭操作等.这些样板代码虽然可以通过 ID ...

  4. SpringBoot实现整合mybatis-generator-maven-plugin 1.4.0

    创建 Maven 工程 网上有很多教程且 Idea 可以直接创建 这里就不进行 pom.xml 引入依赖和插件 pom中generalto-maven-plugs中必须指定mysql驱动,并且明确版本 ...

  5. 用 Python 写个贪吃蛇,保姆级教程!

    本文基于 Windows 环境开发,适合 Python 新手 本文作者:HelloGitHub-Anthony HelloGitHub 推出的<讲解开源项目>系列,本期介绍 Python ...

  6. 十、.net core(.NET 6)搭建ElasticSearch(ES)系列之Java环境搭建和Node.js环境搭建

    安装java jdk环境:我此处使用的是jdk16版本.下载地址: https://www.oracle.com/java/technologies/javase-jdk16-downloads.ht ...

  7. 限流&熔断的考量

    限流的原则,是尽量在流量源头限,并且是需要依据现有团队所掌握的技能来. 如上最左侧便是主要流量的来源入口,首先就要限制的地方就是slb节点的income流量 slb节点的流量特点是啥?加限流怎么加?限 ...

  8. Linux分区创建、挂载

    fdisk -l 这块盘是没有分区的,没有被使用. fdisk /dev/vdb 操作这块磁盘, 创建分区 格式化/dev/sdb1为ext4 mkfs -t ext4 /dev/vdb1 mkfs. ...

  9. 目标检测coco数据集点滴介绍

    目标检测coco数据集点滴介绍 1.  COCO数据集介绍 MS COCO 是google 开源的大型数据集, 分为目标检测.分割.关键点检测三大任务, 数据集主要由图片和json 标签文件组成. c ...

  10. wrk(1)- 详细使用

    介绍 wrk 是一个类似 ab(apache bench).jmeter 的压力测试工具,官方称它为:现代的 HTTP 基准测试工具 用 C 编写的 HTTP 协议压测工具 底层基于 epoll 和 ...