1.MapReduce概念

1)MapReduce是一种分布式计算模型,由Google提出,主要用于搜索领域,解决海量数据的计算问题.

2)MapReduce是分布式运行的,由两个阶段组成:Map和Reduce,Map阶段是一个独立的程序,有很多个节点同时运行,每个节点处理一部分数据。Reduce阶段是一个独立的程序,有很多个节点同时运行,每个节点处理一部分数据【在这先把reduce理解为一个单独的聚合程序即可】。

3)MapReduce框架都有默认实现,用户只需要覆盖map()和reduce()两个函数,即可实现分布式计算,非常简单。

4)两个函数的形参和返回值都是<key、value>,使用的时候一定要注意构造<k,v>。

2.MapReduce核心思想

(1)分布式的运算程序往往需要分成至少2个阶段。

(2)第一个阶段的MapTask并发实例,完全并行运行,互不相干。

(3)第二个阶段的ReduceTask并发实例互不相干,但是他们的数据依赖于上一个阶段的所有MapTask并发实例的输出。

(4)MapReduce编程模型只能包含一个Map阶段和一个Reduce阶段,如果用户的业务逻辑非常复杂,那就只能多个MapReduce程序,串行运行。

总结:分析WordCount数据流走向深入理解MapReduce核心思想。

 3. MapReduce 中的shuffle

 4.Mapreduce代码

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat; import java.io.IOException; public class WordCount {
//分割任务
// 第一对kv,是决定数据输入的格式
// 第二队kv 是决定数据输出的格式
public static class MyMapper extends Mapper<LongWritable, Text, Text, LongWritable> {
/*map阶段数据是一行一行过来的
每一行数据都需要执行代码*/
@Override
protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
LongWritable longWritable = new LongWritable(1);
String s = value.toString();
context.write(new Text(s), longWritable);
}
}
//接收Map端数据
public static class MyReducer extends Reducer<Text, LongWritable, Text, LongWritable> {
/* reduce 聚合程序 每一个k都会调用一次
* 默认是一个节点
* key:每一个单词
* values:map端 当前k所对应的所有的v
*/
@Override
protected void reduce(Text key, Iterable<LongWritable> values, Context context) throws IOException, InterruptedException {
//设置统计的初始值为0
long sum = 0l;
for (LongWritable value : values) {
sum += value.get();
}
context.write(key, new LongWritable(sum));
}
} /**
* 是当前mapreduce程序入口
* 用来构建mapreduce程序
*/
public static void main(String[] args) throws IOException, ClassNotFoundException, InterruptedException {
//创建一个job任务
Job job=Job.getInstance();
//指定job名称
job.setJobName("第一个mr程序");
//构建mr
//指定当前main所在类名(识别具体的类)
job.setJarByClass(WordCount.class);
//指定map端类
// 指定map输出的kv类型
job.setMapperClass(MyMapper.class);
job.setMapOutputKeyClass(Text.class);
job.setMapOutputValueClass(LongWritable.class);
//指定reduce端类
//指定reduce端输出的kv类型
job.setReducerClass(MyReducer.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(LongWritable.class); // 指定输入路径
Path in = new Path("/word");
FileInputFormat.addInputPath(job,in);
//输出路径指定
Path out = new Path("/output");
FileSystem fs = FileSystem.get(new Configuration());
//如果文件存在
if(fs.exists(out)){
fs.delete(out,true);
}
//存在
FileOutputFormat.setOutputPath(job,out); //启动
job.waitForCompletion(true);
System.out.println("MapReduce正在执行");
}
}

MapReduce原理深入理解(一)的更多相关文章

  1. MapReduce原理深入理解(二)

    1.Mapreduce操作不需要reduce阶段 1 import org.apache.hadoop.conf.Configuration; 2 import org.apache.hadoop.f ...

  2. 大数据运算模型 MapReduce 原理

    大数据运算模型 MapReduce 原理 2016-01-24 杜亦舒 MapReduce 是一个大数据集合的并行运算模型,由google提出,现在流行的hadoop中也使用了MapReduce作为计 ...

  3. MapReduce原理及其主要实现平台分析

    原文:http://www.infotech.ac.cn/article/2012/1003-3513-28-2-60.html MapReduce原理及其主要实现平台分析 亢丽芸, 王效岳, 白如江 ...

  4. MapReduce 原理与 Python 实践

    MapReduce 原理与 Python 实践 1. MapReduce 原理 以下是个人在MongoDB和Redis实际应用中总结的Map-Reduce的理解 Hadoop 的 MapReduce ...

  5. hadoop自带例子SecondarySort源码分析MapReduce原理

    这里分析MapReduce原理并没用WordCount,目前没用过hadoop也没接触过大数据,感觉,只是感觉,在项目中,如果真的用到了MapReduce那待排序的肯定会更加实用. 先贴上源码 pac ...

  6. 04 MapReduce原理介绍

    大数据实战(上) # MapReduce原理介绍 大纲: * Mapreduce介绍 * MapReduce2运行原理 * shuffle及排序    定义 * Mapreduce 最早是由googl ...

  7. Atitit 泛型原理与理解attilax总结

    Atitit 泛型原理与理解attilax总结 1. 泛型历史11.1.1. 由来11.2. 为什么需要泛型,类型安全21.3. 7.泛型的好处22. 泛型的机制编辑22.1.1. 机制32.1.2. ...

  8. Hapoop原理及MapReduce原理分析

    Hapoop原理 Hadoop是一个开源的可运行于大规模集群上的分布式并行编程框架,其最核心的设计包括:MapReduce和HDFS.基于 Hadoop,你可以轻松地编写可处理海量数据的分布式并行程序 ...

  9. Hadoop学习记录(4)|MapReduce原理|API操作使用

    MapReduce概念 MapReduce是一种分布式计算模型,由谷歌提出,主要用于搜索领域,解决海量数据计算问题. MR由两个阶段组成:Map和Reduce,用户只需要实现map()和reduce( ...

随机推荐

  1. Install Redmine on Virtual Machine with Vagrant

    Initialize VM: chad@typcserver ~/docs/vagrant-prj $ vagrant --version Vagrant 1.4.3 chad@typcserver ...

  2. uniapp scroll-view 组件横向滑动失效(ios问题出的最多)

    注意事项(做好以下几点就很难出问题): 一.scroll-view组件必须有固定高度,不可出现高度坍塌或让高度消失等现象;(重中之重) 二.一般问题出的多的就是在nvue环境下去使用的scroll-v ...

  3. .net core signalR 服务端强制中断用户连接

    .net core signalR 服务端断开连接 { } { } *:first-child { } *:last-child { } { } { } { } { } { } { } { } { } ...

  4. java 搞笑注释

    // _ooOoo_ // o8888888o // 88" . "88 // (| -_- |) // O\ = /O // ____/`---'\____ // . ' \\| ...

  5. mzy git学习,分支以及分支合并(四)

    git 鼓励大量使用分支:最后进行master和分支之间的合并 git branch git branch 查看当前有多少分支,并且将当前在使用的分支用*标注出来. [一定要注意git的分支有从属概念 ...

  6. 多线程编程<一>

    1 /** 2 * 通过制定synchronized限定符,可以同步用于对象的一个或多个方法.当调用同步的方法时,对象会被加锁,直到方法返回. 3 * @author Burke 4 * 5 */ 6 ...

  7. 刷题-力扣-213. 打家劫舍 II

    213. 打家劫舍 II 题目链接 来源:力扣(LeetCode) 链接:https://leetcode-cn.com/problems/house-robber-ii/ 著作权归领扣网络所有.商业 ...

  8. tree命令出现乱码

    alias tree='tree --charset ASCII'就可以了

  9. for循环操作(for...in、forEach)

    1.for...in语句用于对数组或者对象的属性进行循环操作,是for循环的一种. 注意:该方法可用于数组或对象. 语法:  for(变量 in 对象/数组){} 如: var obj = { nam ...

  10. 微信小程序 转盘抽奖 倒计时 整点

    xml: <view id="luckdraw_box"> <view id="luckdraw_back"> <image st ...