原文出处: 海子

在上一篇文章中我们讲到了如何使用关键字synchronized来实现同步访问。本文我们继续来探讨这个问题,从Java 5之后,在java.util.concurrent.locks包下提供了另外一种方式来实现同步访问,那就是Lock。

也许有朋友会问,既然都可以通过synchronized来实现同步访问了,那么为什么还需要提供Lock?这个问题将在下面进行阐述。本文先从synchronized的缺陷讲起,然后再讲述java.util.concurrent.locks包下常用的有哪些类和接口,最后讨论以下一些关于锁的概念方面的东西。

以下是本文目录大纲:

一.synchronized的缺陷

二.java.util.concurrent.locks包下常用的类

三.锁的相关概念介绍

若有不正之处请多多谅解,并欢迎批评指正。

一.synchronized的缺陷

synchronized是java中的一个关键字,也就是说是Java语言内置的特性。那么为什么会出现Lock呢?

在上面一篇文章中,我们了解到如果一个代码块被synchronized修饰了,当一个线程获取了对应的锁,并执行该代码块时,其他线程便只能一直等待,等待获取锁的线程释放锁,而这里获取锁的线程释放锁只会有两种情况:

1)获取锁的线程执行完了该代码块,然后线程释放对锁的占有;

2)线程执行发生异常,此时JVM会让线程自动释放锁。

那么如果这个获取锁的线程由于要等待IO或者其他原因(比如调用sleep方法)被阻塞了,但是又没有释放锁,其他线程便只能干巴巴地等待,试想一下,这多么影响程序执行效率。

因此就需要有一种机制可以不让等待的线程一直无期限地等待下去(比如只等待一定的时间或者能够响应中断),通过Lock就可以办到。

再举个例子:当有多个线程读写文件时,读操作和写操作会发生冲突现象,写操作和写操作会发生冲突现象,但是读操作和读操作不会发生冲突现象。

但是采用synchronized关键字来实现同步的话,就会导致一个问题:

如果多个线程都只是进行读操作,所以当一个线程在进行读操作时,其他线程只能等待无法进行读操作。

因此就需要一种机制来使得多个线程都只是进行读操作时,线程之间不会发生冲突,通过Lock就可以办到。

另外,通过Lock可以知道线程有没有成功获取到锁。这个是synchronized无法办到的。

总结一下,也就是说Lock提供了比synchronized更多的功能。但是要注意以下几点:

1)Lock不是Java语言内置的,synchronized是Java语言的关键字,因此是内置特性。Lock是一个类,通过这个类可以实现同步访问;

2)Lock和synchronized有一点非常大的不同,采用synchronized不需要用户去手动释放锁,当synchronized方法或者synchronized代码块执行完之后,系统会自动让线程释放对锁的占用;而Lock则必须要用户去手动释放锁,如果没有主动释放锁,就有可能导致出现死锁现象。

二.java.util.concurrent.locks包下常用的类

下面我们就来探讨一下java.util.concurrent.locks包中常用的类和接口。

1.Lock

首先要说明的就是Lock,通过查看Lock的源码可知,Lock是一个接口:

1
2
3
4
5
6
7
8
public interface Lock {
    void lock();
    void lockInterruptibly() throws InterruptedException;
    boolean tryLock();
    boolean tryLock(long time, TimeUnit unit) throws InterruptedException;
    void unlock();
    Condition newCondition();
}

下面来逐个讲述Lock接口中每个方法的使用,lock()、tryLock()、tryLock(long time, TimeUnit unit)和lockInterruptibly()是用来获取锁的。unLock()方法是用来释放锁的。newCondition()这个方法暂且不在此讲述,会在后面的线程协作一文中讲述。

在Lock中声明了四个方法来获取锁,那么这四个方法有何区别呢?

首先lock()方法是平常使用得最多的一个方法,就是用来获取锁。如果锁已被其他线程获取,则进行等待。

由于在前面讲到如果采用Lock,必须主动去释放锁,并且在发生异常时,不会自动释放锁。因此一般来说,使用Lock必须在try{}catch{}块中进行,并且将释放锁的操作放在finally块中进行,以保证锁一定被被释放,防止死锁的发生。通常使用Lock来进行同步的话,是以下面这种形式去使用的:

1
2
3
4
5
6
7
8
9
Lock lock = ...;
lock.lock();
try{
    //处理任务
}catch(Exception ex){
 
}finally{
    lock.unlock();   //释放锁
}
 

tryLock()方法是有返回值的,它表示用来尝试获取锁,如果获取成功,则返回true,如果获取失败(即锁已被其他线程获取),则返回false,也就说这个方法无论如何都会立即返回。在拿不到锁时不会一直在那等待。

tryLock(long time, TimeUnit unit)方法和tryLock()方法是类似的,只不过区别在于这个方法在拿不到锁时会等待一定的时间,在时间期限之内如果还拿不到锁,就返回false。如果如果一开始拿到锁或者在等待期间内拿到了锁,则返回true。

所以,一般情况下通过tryLock来获取锁时是这样使用的:

1
2
3
4
5
6
7
8
9
10
11
12
Lock lock = ...;
if(lock.tryLock()) {
     try{
         //处理任务
     }catch(Exception ex){
 
     }finally{
         lock.unlock();   //释放锁
     }
}else {
    //如果不能获取锁,则直接做其他事情
}

lockInterruptibly()方法比较特殊,当通过这个方法去获取锁时,如果线程正在等待获取锁,则这个线程能够响应中断,即中断线程的等待状态。也就使说,当两个线程同时通过lock.lockInterruptibly()想获取某个锁时,假若此时线程A获取到了锁,而线程B只有在等待,那么对线程B调用threadB.interrupt()方法能够中断线程B的等待过程。

由于lockInterruptibly()的声明中抛出了异常,所以lock.lockInterruptibly()必须放在try块中或者在调用lockInterruptibly()的方法外声明抛出InterruptedException。

因此lockInterruptibly()一般的使用形式如下:

1
2
3
4
5
6
7
8
9
public void method() throws InterruptedException {
    lock.lockInterruptibly();
    try
     //.....
    }
    finally {
        lock.unlock();
    
}

注意,当一个线程获取了锁之后,是不会被interrupt()方法中断的。因为本身在前面的文章中讲过单独调用interrupt()方法不能中断正在运行过程中的线程,只能中断阻塞过程中的线程。

因此当通过lockInterruptibly()方法获取某个锁时,如果不能获取到,只有进行等待的情况下,是可以响应中断的。

而用synchronized修饰的话,当一个线程处于等待某个锁的状态,是无法被中断的,只有一直等待下去。

2.ReentrantLock

ReentrantLock,意思是“可重入锁”,关于可重入锁的概念在下一节讲述。ReentrantLock是唯一实现了Lock接口的类,并且ReentrantLock提供了更多的方法。下面通过一些实例看具体看一下如何使用ReentrantLock。

例子1,lock()的正确使用方法

 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
public class Test {
    private ArrayList<Integer> arrayList = new ArrayList<Integer>();
    public static void main(String[] args)  {
        final Test test = new Test();
 
        new Thread(){
            public void run() {
                test.insert(Thread.currentThread());
            };
        }.start();
 
        new Thread(){
            public void run() {
                test.insert(Thread.currentThread());
            };
        }.start();
    
 
    public void insert(Thread thread) {
        Lock lock = new ReentrantLock();    //注意这个地方
        lock.lock();
        try {
            System.out.println(thread.getName()+"得到了锁");
            for(int i=0;i<5;i++) {
                arrayList.add(i);
            }
        } catch (Exception e) {
            // TODO: handle exception
        }finally {
            System.out.println(thread.getName()+"释放了锁");
            lock.unlock();
        }
    }
}

各位朋友先想一下这段代码的输出结果是什么?

Thread-0得到了锁
Thread-1得到了锁
Thread-0释放了锁
Thread-1释放了锁

也许有朋友会问,怎么会输出这个结果?第二个线程怎么会在第一个线程释放锁之前得到了锁?原因在于,在insert方法中的lock变量是局部变量,每个线程执行该方法时都会保存一个副本,那么理所当然每个线程执行到lock.lock()处获取的是不同的锁,所以就不会发生冲突。

知道了原因改起来就比较容易了,只需要将lock声明为类的属性即可。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
public class Test {
    private ArrayList<Integer> arrayList = new ArrayList<Integer>();
    private Lock lock = new ReentrantLock();    //注意这个地方
    public static void main(String[] args)  {
        final Test test = new Test();
 
        new Thread(){
            public void run() {
                test.insert(Thread.currentThread());
            };
        }.start();
 
        new Thread(){
            public void run() {
                test.insert(Thread.currentThread());
            };
        }.start();
    
 
    public void insert(Thread thread) {
        lock.lock();
        try {
            System.out.println(thread.getName()+"得到了锁");
            for(int i=0;i<5;i++) {
                arrayList.add(i);
            }
        } catch (Exception e) {
            // TODO: handle exception
        }finally {
            System.out.println(thread.getName()+"释放了锁");
            lock.unlock();
        }
    }
}
 

这样就是正确地使用Lock的方法了。

例子2,tryLock()的使用方法

 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
public class Test {
    private ArrayList<Integer> arrayList = new ArrayList<Integer>();
    private Lock lock = new ReentrantLock();    //注意这个地方
    public static void main(String[] args)  {
        final Test test = new Test();
 
        new Thread(){
            public void run() {
                test.insert(Thread.currentThread());
            };
        }.start();
 
        new Thread(){
            public void run() {
                test.insert(Thread.currentThread());
            };
        }.start();
    
 
    public void insert(Thread thread) {
        if(lock.tryLock()) {
            try {
                System.out.println(thread.getName()+"得到了锁");
                for(int i=0;i<5;i++) {
                    arrayList.add(i);
                }
            } catch (Exception e) {
                // TODO: handle exception
            }finally {
                System.out.println(thread.getName()+"释放了锁");
                lock.unlock();
            }
        } else {
            System.out.println(thread.getName()+"获取锁失败");
        }
    }
}

输出结果:

Thread-0得到了锁
Thread-1获取锁失败
Thread-0释放了锁

例子3,lockInterruptibly()响应中断的使用方法:

 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
public class Test {
    private Lock lock = new ReentrantLock();  
    public static void main(String[] args)  {
        Test test = new Test();
        MyThread thread1 = new MyThread(test);
        MyThread thread2 = new MyThread(test);
        thread1.start();
        thread2.start();
 
        try {
            Thread.sleep(2000);
        } catch (InterruptedException e) {
            e.printStackTrace();
        }
        thread2.interrupt();
    
 
    public void insert(Thread thread) throws InterruptedException{
        lock.lockInterruptibly();   //注意,如果需要正确中断等待锁的线程,必须将获取锁放在外面,然后将InterruptedException抛出
        try
            System.out.println(thread.getName()+"得到了锁");
            long startTime = System.currentTimeMillis();
            for(    ;     ;) {
                if(System.currentTimeMillis() - startTime >= Integer.MAX_VALUE)
                    break;
                //插入数据
            }
        }
        finally {
            System.out.println(Thread.currentThread().getName()+"执行finally");
            lock.unlock();
            System.out.println(thread.getName()+"释放了锁");
        
    }
}
 
class MyThread extends Thread {
    private Test test = null;
    public MyThread(Test test) {
        this.test = test;
    }
    @Override
    public void run() {
 
        try {
            test.insert(Thread.currentThread());
        } catch (InterruptedException e) {
            System.out.println(Thread.currentThread().getName()+"被中断");
        }
    }
}

运行之后,发现thread2能够被正确中断。

3.ReadWriteLock

ReadWriteLock也是一个接口,在它里面只定义了两个方法:

 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
public interface ReadWriteLock {
    /**
     * Returns the lock used for reading.
     *
     * @return the lock used for reading.
     */
    Lock readLock();
 
    /**
     * Returns the lock used for writing.
     *
     * @return the lock used for writing.
     */
    Lock writeLock();
}

一个用来获取读锁,一个用来获取写锁。也就是说将文件的读写操作分开,分成2个锁来分配给线程,从而使得多个线程可以同时进行读操作。下面的ReentrantReadWriteLock实现了ReadWriteLock接口。

4.ReentrantReadWriteLock

ReentrantReadWriteLock里面提供了很多丰富的方法,不过最主要的有两个方法:readLock()和writeLock()用来获取读锁和写锁。

下面通过几个例子来看一下ReentrantReadWriteLock具体用法。

假如有多个线程要同时进行读操作的话,先看一下synchronized达到的效果:

 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
public class Test {
    private ReentrantReadWriteLock rwl = new ReentrantReadWriteLock();
 
    public static void main(String[] args)  {
        final Test test = new Test();
 
        new Thread(){
            public void run() {
                test.get(Thread.currentThread());
            };
        }.start();
 
        new Thread(){
            public void run() {
                test.get(Thread.currentThread());
            };
        }.start();
 
    
 
    public synchronized void get(Thread thread) {
        long start = System.currentTimeMillis();
        while(System.currentTimeMillis() - start <= 1) {
            System.out.println(thread.getName()+"正在进行读操作");
        }
        System.out.println(thread.getName()+"读操作完毕");
    }
}

这段程序的输出结果会是,直到thread1执行完读操作之后,才会打印thread2执行读操作的信息。

Thread-0正在进行读操作
Thread-0正在进行读操作
Thread-0正在进行读操作
Thread-0正在进行读操作
Thread-0正在进行读操作
Thread-0正在进行读操作
Thread-0正在进行读操作
Thread-0正在进行读操作
Thread-0正在进行读操作
Thread-0正在进行读操作
Thread-0正在进行读操作
Thread-0正在进行读操作
Thread-0正在进行读操作
Thread-0正在进行读操作
Thread-0正在进行读操作
Thread-0正在进行读操作
Thread-0正在进行读操作
Thread-0正在进行读操作
Thread-0正在进行读操作
Thread-0正在进行读操作
Thread-0正在进行读操作
Thread-0正在进行读操作
Thread-0正在进行读操作
Thread-0正在进行读操作
Thread-0正在进行读操作
Thread-0正在进行读操作
Thread-0正在进行读操作
Thread-0正在进行读操作
Thread-0读操作完毕
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1读操作完毕

而改成用读写锁的话:

 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
public class Test {
    private ReentrantReadWriteLock rwl = new ReentrantReadWriteLock();
 
    public static void main(String[] args)  {
        final Test test = new Test();
 
        new Thread(){
            public void run() {
                test.get(Thread.currentThread());
            };
        }.start();
 
        new Thread(){
            public void run() {
                test.get(Thread.currentThread());
            };
        }.start();
 
    
 
    public void get(Thread thread) {
        rwl.readLock().lock();
        try {
            long start = System.currentTimeMillis();
 
            while(System.currentTimeMillis() - start <= 1) {
                System.out.println(thread.getName()+"正在进行读操作");
            }
            System.out.println(thread.getName()+"读操作完毕");
        } finally {
            rwl.readLock().unlock();
        }
    }
}

此时打印的结果为:

Thread-0正在进行读操作
Thread-0正在进行读操作
Thread-1正在进行读操作
Thread-0正在进行读操作
Thread-1正在进行读操作
Thread-0正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-0正在进行读操作
Thread-0正在进行读操作
Thread-0正在进行读操作
Thread-0正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-0正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-0正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-0正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-0正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-0正在进行读操作
Thread-1正在进行读操作
Thread-0正在进行读操作
Thread-1正在进行读操作
Thread-0正在进行读操作
Thread-1正在进行读操作
Thread-0正在进行读操作
Thread-1正在进行读操作
Thread-0正在进行读操作
Thread-1正在进行读操作
Thread-0正在进行读操作
Thread-1正在进行读操作
Thread-0正在进行读操作
Thread-1正在进行读操作
Thread-0读操作完毕
Thread-1读操作完毕

说明thread1和thread2在同时进行读操作。

这样就大大提升了读操作的效率。

不过要注意的是,如果有一个线程已经占用了读锁,则此时其他线程如果要申请写锁,则申请写锁的线程会一直等待释放读锁。

如果有一个线程已经占用了写锁,则此时其他线程如果申请写锁或者读锁,则申请的线程会一直等待释放写锁。

关于ReentrantReadWriteLock类中的其他方法感兴趣的朋友可以自行查阅API文档。

5.Lock和synchronized的选择

总结来说,Lock和synchronized有以下几点不同:

1)Lock是一个接口,而synchronized是Java中的关键字,synchronized是内置的语言实现;

2)synchronized在发生异常时,会自动释放线程占有的锁,因此不会导致死锁现象发生;而Lock在发生异常时,如果没有主动通过unLock()去释放锁,则很可能造成死锁现象,因此使用Lock时需要在finally块中释放锁;

3)Lock可以让等待锁的线程响应中断,而synchronized却不行,使用synchronized时,等待的线程会一直等待下去,不能够响应中断;

4)通过Lock可以知道有没有成功获取锁,而synchronized却无法办到。

5)Lock可以提高多个线程进行读操作的效率。

在性能上来说,如果竞争资源不激烈,两者的性能是差不多的,而当竞争资源非常激烈时(即有大量线程同时竞争),此时Lock的性能要远远优于synchronized。所以说,在具体使用时要根据适当情况选择。

三.锁的相关概念介绍

在前面介绍了Lock的基本使用,这一节来介绍一下与锁相关的几个概念。

1.可重入锁

如果锁具备可重入性,则称作为可重入锁。像synchronized和ReentrantLock都是可重入锁,可重入性在我看来实际上表明了锁的分配机制:基于线程的分配,而不是基于方法调用的分配。举个简单的例子,当一个线程执行到某个synchronized方法时,比如说method1,而在method1中会调用另外一个synchronized方法method2,此时线程不必重新去申请锁,而是可以直接执行方法method2。

看下面这段代码就明白了:

 
1
2
3
4
5
6
7
8
9
class MyClass {
    public synchronized void method1() {
        method2();
    }
 
    public synchronized void method2() {
 
    }
}

上述代码中的两个方法method1和method2都用synchronized修饰了,假如某一时刻,线程A执行到了method1,此时线程A获取了这个对象的锁,而由于method2也是synchronized方法,假如synchronized不具备可重入性,此时线程A需要重新申请锁。但是这就会造成一个问题,因为线程A已经持有了该对象的锁,而又在申请获取该对象的锁,这样就会线程A一直等待永远不会获取到的锁。

而由于synchronized和Lock都具备可重入性,所以不会发生上述现象。

2.可中断锁

可中断锁:顾名思义,就是可以相应中断的锁。

在Java中,synchronized就不是可中断锁,而Lock是可中断锁。

如果某一线程A正在执行锁中的代码,另一线程B正在等待获取该锁,可能由于等待时间过长,线程B不想等待了,想先处理其他事情,我们可以让它中断自己或者在别的线程中中断它,这种就是可中断锁。

在前面演示lockInterruptibly()的用法时已经体现了Lock的可中断性。

3.公平锁

公平锁即尽量以请求锁的顺序来获取锁。比如同是有多个线程在等待一个锁,当这个锁被释放时,等待时间最久的线程(最先请求的线程)会获得该所,这种就是公平锁。

非公平锁即无法保证锁的获取是按照请求锁的顺序进行的。这样就可能导致某个或者一些线程永远获取不到锁。

在Java中,synchronized就是非公平锁,它无法保证等待的线程获取锁的顺序。

而对于ReentrantLock和ReentrantReadWriteLock,它默认情况下是非公平锁,但是可以设置为公平锁。

看一下这2个类的源代码就清楚了:

在ReentrantLock中定义了2个静态内部类,一个是NotFairSync,一个是FairSync,分别用来实现非公平锁和公平锁。

我们可以在创建ReentrantLock对象时,通过以下方式来设置锁的公平性:

 
1
ReentrantLock lock = new ReentrantLock(true);

如果参数为true表示为公平锁,为fasle为非公平锁。默认情况下,如果使用无参构造器,则是非公平锁。

另外在ReentrantLock类中定义了很多方法,比如:

isFair()        //判断锁是否是公平锁

isLocked()    //判断锁是否被任何线程获取了

isHeldByCurrentThread()   //判断锁是否被当前线程获取了

hasQueuedThreads()   //判断是否有线程在等待该锁

在ReentrantReadWriteLock中也有类似的方法,同样也可以设置为公平锁和非公平锁。不过要记住,ReentrantReadWriteLock并未实现Lock接口,它实现的是ReadWriteLock接口。

4.读写锁

读写锁将对一个资源(比如文件)的访问分成了2个锁,一个读锁和一个写锁。

正因为有了读写锁,才使得多个线程之间的读操作不会发生冲突。

ReadWriteLock就是读写锁,它是一个接口,ReentrantReadWriteLock实现了这个接口。

可以通过readLock()获取读锁,通过writeLock()获取写锁。

上面已经演示过了读写锁的使用方法,在此不再赘述。

Java并发编程:Lock的更多相关文章

  1. Java并发编程:Lock

    Java并发编程:Lock 在上一篇文章中我们讲到了如何使用关键字synchronized来实现同步访问.本文我们继续来探讨这个问题,从Java 5之后,在java.util.concurrent.l ...

  2. java 并发编程lock使用详解

    浅谈Synchronized: synchronized是Java的一个关键字,也就是Java语言内置的特性,如果一个代码块被synchronized修饰了,当一个线程获取了对应的锁,执行代码块时,其 ...

  3. 【多线程】Java并发编程:Lock(转载)

    原文链接:http://www.cnblogs.com/dolphin0520/p/3923167.html Java并发编程:Lock 在上一篇文章中我们讲到了如何使用关键字synchronized ...

  4. 转: 【Java并发编程】之二十:并发新特性—Lock锁和条件变量(含代码)

    简单使用Lock锁 Java5中引入了新的锁机制--Java.util.concurrent.locks中的显式的互斥锁:Lock接口,它提供了比synchronized更加广泛的锁定操作.Lock接 ...

  5. java并发编程 | 锁详解:AQS,Lock,ReentrantLock,ReentrantReadWriteLock

    原文:java并发编程 | 锁详解:AQS,Lock,ReentrantLock,ReentrantReadWriteLock 锁 锁是用来控制多个线程访问共享资源的方式,java中可以使用synch ...

  6. [转载] java并发编程:Lock(线程锁)

    作者:海子 原文链接: http://www.cnblogs.com/dolphin0520/p/3923167.html 出处:http://www.cnblogs.com/dolphin0520/ ...

  7. Java并发编程:Lock(转)

    本文转自:http://www.cnblogs.com/dolphin0520/p/3923167.html Java并发编程:Lock 在上一篇文章中我们讲到了如何使用关键字synchronized ...

  8. 5、Java并发编程:Lock

    Java并发编程:Lock 在上一篇文章中我们讲到了如何使用关键字synchronized来实现同步访问.本文我们继续来探讨这个问题,从Java 5之后,在java.util.concurrent.l ...

  9. Java并发编程(06):Lock机制下API用法详解

    本文源码:GitHub·点这里 || GitEE·点这里 一.Lock体系结构 1.基础接口简介 Lock加锁相关结构中涉及两个使用广泛的基础API:ReentrantLock类和Condition接 ...

  10. 【java并发编程】Lock & Condition 协调同步生产消费

    一.协调生产/消费的需求 本文内容主要想向大家介绍一下Lock结合Condition的使用方法,为了更好的理解Lock锁与Condition锁信号,我们来手写一个ArrayBlockingQueue. ...

随机推荐

  1. php实现设计模式之 装饰模式

    <?php /* * 装饰模式:在不必改变原类文件和使用继承的情况下,动态地扩展一个对象的功能.它是通过创建一个包装对象,也就是装饰来包裹真实的对象. * * 角色 * 抽象构件(Compone ...

  2. 向空项目添加 ASP.NET Identity

    安装 AspNet.Identity 程序包 Microsoft.AspNet.Identity.Core 包含 ASP.NET Identity 核心接口Microsoft.AspNet.Ident ...

  3. rabbitmq性能优化之Consumer utilisation

    如下所示,每个rabbitmq队列除了发布和消费吞吐量外,还有一个评价MQ队列效率的更加重要的指标Consumer utilisation ,如下: 在最佳利用率情况下,这个值能够达到100%,并且生 ...

  4. ADO.NET 中的新增功能

    ADO.NET 中的新增功能: .NET Framework (current version) 以下是 .NET Framework 4.5 中 ADO.NET 的新增功能. SqlClient D ...

  5. LZW压缩算法——简明原理与实现

    LZW和哈夫曼编码一样,是无损压缩中的一种.该算法通过建立字典,实现字符重用与编码,适用于source中重复率很高的文本压缩.本文首先讲下LZW的编解码原理,然后给出LZW的实现code. ***** ...

  6. 使用CSS把ul,li制作成表格

    查看效果:http://hovertree.com/texiao/css/7.htm 具体实现请看样式部分. 完整代码: <!DOCTYPE html> <html> < ...

  7. 那些过目不忘的H5页面

    原文链接:http://isux.tencent.com/great-mobile-h5-pages.html 从引爆朋友圈的H5小游戏<围住神经猫>,到颠覆传统广告的大众点评H5专题页& ...

  8. Linux常用命令:sed

    本文记录的是自己在学习<Linux私房菜>中正则表达式的笔记. 关于行尾符$ 如果文件本身没有内容,比如使用touch新建的文件,那么$将会没有意义.例如下面操作: 先使用touch新建了 ...

  9. iOS 常用三方类库整理

    iOS 常用三方类库整理 1:基于响应式编程思想的oc 地址:https://github.com/ReactiveCocoa/ReactiveCocoa 2:hud提示框 地址:https://gi ...

  10. 在 CentOS7 上部署 zookeeper 服务

    在 CentOS7 上部署 zookeeper 服务 1 用 SecureCRT 或 XShell 等 Linux 客户端工具连接至 CentOS7 服务器: 2 进入到 /usr/local/too ...