本题是运用LCT来维护一个最小生成树。

是一个经典的套路

题目中求的是一个\(max(a_i)+max(b_i)\)尽可能小的路径。

那么这种的一个套路就是,先按照一维来排序,然后用LCT维护另一维

那么这个对于这个题来说,我们考虑,可以先按照a从小到大排序,然后顺次加入每条边,这样每次加入的边一定是有可能会更新到\(ans\)的.

对于一条边\(u->v\),如果\(u\)和\(v\)不在一个联通块里面的话,那么就直接连上这个边,然后尝试更新答案

如果在同一个联通块里面呢,我们就判断\(u\)到\(v\)的路径上的\(b\)值的最大值,如果小于当前的边的\(b\),那么这条边就有可能会更新答案,所以就把原来的边删掉,然后\(link\)当前边。

不过一个需要注意的地方就是

每次不管是加入或者不加入,都需要对\(ans\)进行更新(不需要担心答案的覆盖,因为不优的答案永远是会被优的答案提前更新到一次的)

同时维护边的时候,我是选择了\(map\)

上代码

// luogu-judger-enable-o2
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<vector>
#include<queue>
#include<cmath>
#include<map>
#include<set> using namespace std; inline int read()
{
int x=0,f=1;char ch=getchar();
while (!isdigit(ch)) {if (ch=='-') f=-1;ch=getchar();}
while (isdigit(ch)) {x=(x<<1)+(x<<3)+ch-'0';ch=getchar();}
return x*f;
} const int maxn = 4e5+1e2; struct Node{
int x,y,a,b;
}; Node a[maxn]; int ch[maxn][3];
int fa[maxn],rev[maxn];
int mx[maxn],mxpos[maxn];
int val[maxn];
int n,m; int son(int x)
{
if (ch[fa[x]][0]==x) return 0;
else return 1;
} bool notroot(int x)
{
return ch[fa[x]][0]==x || ch[fa[x]][1]==x;
} void update(int x)
{
mx[x]=val[x];
mxpos[x]=x;
if (ch[x][0])
{
if (mx[ch[x][0]]>mx[x])
{
mx[x]=mx[ch[x][0]];
mxpos[x]=mxpos[ch[x][0]];
}
}
if (ch[x][1])
{
if (mx[ch[x][1]]>mx[x])
{
mx[x]=mx[ch[x][1]];
mxpos[x]=mxpos[ch[x][1]];
}
}
} void reverse(int x)
{
swap(ch[x][0],ch[x][1]);
rev[x]^=1;
} void pushdown(int x)
{
if (rev[x])
{
if (ch[x][1]) reverse(ch[x][1]);
if (ch[x][0]) reverse(ch[x][0]);
rev[x]=0;
}
} void rotate(int x)
{
int y=fa[x],z=fa[y];
int b=son(x),c=son(y);
if (notroot(y)) ch[z][c]=x;
fa[x]=z;
ch[y][b]=ch[x][!b];
fa[ch[x][!b]]=y;
ch[x][!b]=y;
fa[y]=x;
update(y);
update(x);
} int st[maxn]; void splay(int x)
{
int y=x,cnt=0;
st[++cnt]=y;
while (notroot(y)) y=fa[y],st[++cnt]=y;
while (cnt) pushdown(st[cnt--]);
while (notroot(x))
{
int y=fa[x],z=fa[y];
int b=son(x),c=son(y);
if (notroot(y))
{
if (b==c) rotate(y);
else rotate(x);
}
rotate(x);
}
update(x);
} void access(int x)
{
for (int y=0;x;y=x,x=fa[x])
{
splay(x);
ch[x][1]=y;
update(x);
}
//for(expose();pfa;splay()) pfa->expose(),pfa->set_ch(1,this),pfa=0;
//expose(x);while(splice(x));return 0;
} void makeroot(int x)
{
access(x);
splay(x);
reverse(x);
} int findroot(int x)
{
access(x);
splay(x);
while (ch[x][0])
{
pushdown(x);
x=ch[x][0];
}
return x;
} void split(int x,int y)
{
makeroot(x);
access(y);
splay(y);
} void link(int x,int y)
{
makeroot(x);
if (findroot(y)!=x) fa[x]=y;
} void cut(int x,int y)
{
split(x,y);
if (ch[x][0] || ch[x][1] || fa[x]!=y || ch[y][son(x)^1]) return;
fa[x]=ch[y][0]=0;
} int ans=1e9; bool cmp(Node a,Node b)
{
return a.a<b.a;
} int main()
{
n=read(),m=read();
for (int i=1;i<=m;i++)
{
a[i].x=read(),a[i].y=read();
a[i].a=read(),a[i].b=read();
}
sort(a+1,a+1+m,cmp);
for (int i=1;i<=m;i++)
{
val[i+n]=a[i].b;
if (findroot(a[i].x)==findroot(a[i].y))
{
split(a[i].x,a[i].y);
int now = mxpos[a[i].y];
if (mx[a[i].y]<a[i].b) continue;
now-=n;
cut(a[now].x,now+n);
cut(a[now].y,now+n);
//cout<<a[now].x<<" "<<a[now].y<<endl;
link(a[i].x,i+n);
link(a[i].y,i+n);
}
else
{
val[i+n]=a[i].b;
link(a[i].x,i+n);
link(a[i].y,i+n);
}
if (findroot(1)!=findroot(n)) continue;
split(1,n);
ans=min(ans,mx[n]+a[i].a);
// cout<<ans<<endl;
}
if (ans==1e9) ans=-1;
cout<<ans;
return 0;
}

洛谷2387 NOI2014魔法森林(LCT维护最小生成树)的更多相关文章

  1. 洛谷 2387 NOI2014魔法森林 LCT

    [题解] 我们先把边按照$a$值从小到大排序,并按照这个顺序加边. 如果当前要加入的边连接的两点$u$与$v$已经是连通的,那么直接加入这条边就会出现环.这时我们需要删除这个环中$b$值最大的边.因此 ...

  2. 洛谷P2387 [NOI2014]魔法森林(LCT)

    魔法森林 题目传送门 解题思路 把每条路按照\(a\)的值从小到大排序.然后用LCT按照b的值维护最小生成树,将边按照顺序放入.如果\(1\)到\(n\)有了一条路径,就更新最小答案.这个过程就相当于 ...

  3. P2387 [NOI2014]魔法森林 LCT维护最小生成树

    \(\color{#0066ff}{ 题目描述 }\) 为了得到书法大家的真传,小 E 同学下定决心去拜访住在魔法森林中的隐 士.魔法森林可以被看成一个包含 n 个节点 m 条边的无向图,节点标号为 ...

  4. 洛谷 P2387 [NOI2014]魔法森林 解题报告

    P2387 [NOI2014]魔法森林 题目描述 为了得到书法大家的真传,小 E 同学下定决心去拜访住在魔法森林中的隐 士.魔法森林可以被看成一个包含 n 个节点 m 条边的无向图,节点标号为 1,2 ...

  5. [BZOJ3669] [NOI2004] 魔法森林 LCT维护最小生成树

    题面 一开始看到这道题虽然知道是跟LCT维护最小生成树相关的但是没有可以的去想. 感觉可以先二分一下总的精灵数,但是感觉不太好做. 又感觉可以只二分一种精灵,用最小生成树算另一种精灵,但是和似乎不单调 ...

  6. 洛谷P2387 [NOI2014]魔法森林(lct维护最小生成树)

    题目描述 为了得到书法大家的真传,小 E 同学下定决心去拜访住在魔法森林中的隐 士.魔法森林可以被看成一个包含 n 个节点 m 条边的无向图,节点标号为 1,2,3,…,n,边标号为 1,2,3,…, ...

  7. 洛谷P2387 [NOI2014]魔法森林(LCT,Splay)

    在XZY&XZZ巨佬的引领下,一枚蒟蒻终于啃动了这道题...... 这次还是第一次写LCT维护边权,还要化边为点,思路乱七八糟的,写起来也不顺手,还好调了许久终于AC啦. 贪心排序按一个关键字 ...

  8. 洛谷P2387 [NOI2014]魔法森林(LCT)

    在XZY&XZZ巨佬的引领下,一枚蒟蒻终于啃动了这道题...... 这次还是第一次写LCT维护边权,还要化边为点,思路乱七八糟的,写起来也不顺手,还好调了许久终于AC啦. 贪心排序按一个关键字 ...

  9. 【BZOJ 3669】 [Noi2014]魔法森林 LCT维护动态最小生成树

    这道题看题意是在求一个二维最小瓶颈路,唯一可行方案就是枚举一维在这一维满足的条件下使另一维最小,那么我们就把第一维排序利用A小的边在A大的情况下仍成立来动态加边维护最小生成树. #include &l ...

随机推荐

  1. ES6扩展——模板字符串

    ${ } 模板字符串占位符 需要用反引号` ` 1.模板字符串 `${变量}` const xiaoming = { name:'xiaoming', age:14, say1:function(){ ...

  2. ROS catkin_make error Could not find a package configuration file provided by "actionlib_msgs"

    在使用ROS catkin_make编译的时候,出现类似如下错误 CMake Error at /opt/ros/kinetic/share/catkin/cmake/catkinConfig.cma ...

  3. 百闻不如一试——公式图片转Latex代码

    写博客时,数学公式的编辑比较占用时间,在上一篇中详细介绍了如何在Markdown中编辑数学符号与公式. https://www.cnblogs.com/bytesfly/p/markdown-form ...

  4. thrift的介绍及其使用

    什么是thrift Thrift是Facebook于2007年开发的跨语言的rpc服框架,提供多语言的编译功能,并提供多种服务器工作模式:用户通过Thrift的IDL(接口定义语言)来描述接口函数及数 ...

  5. Python3正则表达式学习笔记

    学习前准备:导入re模块 import re 一.re的核心函数 1 - re.compile(pattern[, flags]) 编译正则表达式,速度快 2 - re.match(pattern, ...

  6. SpringBoot 如何生成接口文档,老鸟们都这么玩的!

    大家好,我是飘渺. SpringBoot老鸟系列的文章已经写了两篇,每篇的阅读反响都还不错,果然大家还是对SpringBoot比较感兴趣.那今天我们就带来老鸟系列的第三篇:集成Swagger接口文档以 ...

  7. weblogic获取应用目录路径

    一.背景说明 在项目开发过程中,本地开发用的windows+tomcat,到了生产中,就成了linux+weblogic.部署工程后,应用报错,显示获取应用目录返回为null. 在网上查阅资料,发现在 ...

  8. python模块--calendar

    方法 返回值类型 说明 .calendar(theyear, w=2, l=1, c=6, m=3) str 返回指定年份的年历, w: 每个日期的宽度, l: 每一行的纵向宽度, c: 月与月之间的 ...

  9. AspectJWeaver文件写入gadget详解和两种应用场景举例

    目录 0 前言 1 环境 2 gadget解析 2.1 高版本Commons-Collections的防御措施 2.2 获取AspectJWeaver的调用链 2.3 gadget详解 3 两种应用场 ...

  10. Java集合:HashMap

    Hashmap是一个存储key-value的映射表. 优点: 索引数据快,查找一个数据对的时间复杂度是O(1) 增加.删除一个数据的时间复杂度是O(1) key不能重复,可以存储一个null值 存储: ...