洛谷3973 TJOI2015线性代数(最小割+思维)
感觉要做出来这个题,需要一定的线代芝士
首先,我们来观察这个柿子。
我们将\(B\)的权值看作是收益的话,\(C\)的权值就是花费。
根据矩阵乘法的原理,只有当\(a[i]和a[j]\)都为\(1\)的时候,才能够获取到\(a[i][j]\)代价,而把\(a[i]\)弄成1,又会付出\(c[i]\)的代价。
那这不就是一个经典的最大全闭合子图模型吗?
我们令\(S \rightarrow (i,j)\)这个坐标对应的点。流量是\(b[i][j]\),表示割去这个边,就舍弃了\(b[i][j]\)的收益
然后\(i\rightarrow t\),流量是\(c[i]\),表示如果这一位是1,要付出\(c[i]\)的代价。
然后\((i,j) \rightarrow i,(i,j)\rightarrow j\)
流量是\(inf\)
因为依赖关系没法取消
// luogu-judger-enable-o2
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<cmath>
#include<queue>
#include<map>
#include<set>
#define mk make_pair
#define ll long long
using namespace std;
inline int read()
{
int x=0,f=1;char ch=getchar();
while (!isdigit(ch)) {if (ch=='-') f=-1;ch=getchar();}
while (isdigit(ch)) {x=(x<<1)+(x<<3)+ch-'0';ch=getchar();}
return x*f;
}
const int maxn = 303003;
const int maxm = 2e6+1e2;
const int inf = 1e9;
int point[maxn],nxt[maxm],to[maxm],val[maxm];
int cnt=1,n,m;
int h[maxn];
int b[610][610];
int c[510];
void addedge(int x,int y,int w)
{
nxt[++cnt]=point[x];
to[cnt]=y;
val[cnt]=w;
point[x]=cnt;
}
void insert(int x,int y,int w)
{
addedge(x,y,w);
addedge(y,x,0);
}
int s,t;
queue<int> q;
bool bfs(int s)
{
memset(h,-1,sizeof(h));
h[s]=0;
q.push(s);
while (!q.empty())
{
int x = q.front();
q.pop();
for (int i=point[x];i;i=nxt[i])
{
int p = to[i];
if (h[p]==-1 && val[i]>0)
{
h[p]=h[x]+1;
q.push(p);
}
}
}
//cout<<1<<endl;
if(h[t]==-1) return false;
return true;
}
int dfs(int x,int low)
{
if (x==t ||low==0) return low;
int totflow=0;
for (int i=point[x];i;i=nxt[i])
{
int p=to[i];
if (val[i]>0 &&h[p]==h[x]+1)
{
int tmp = dfs(p,min(low,val[i]));
val[i]-=tmp;
val[i^1]+=tmp;
low-=tmp;
totflow+=tmp;
if (low==0) return totflow;
}
}
if (low>0) h[x]=-1;
return totflow;
}
int dinic()
{
int ans=0;
while (bfs(s))
{
ans=ans+dfs(s,inf);
}
return ans;
}
int main()
{
n=read();
s=maxn-10;
t=s+1;
int sum=0;
for (int i=1;i<=n;i++)
for (int j=1;j<=n;j++)
{
b[i][j]=read();
sum+=b[i][j];
insert(s,(i-1)*n+j,b[i][j]);
}
for (int i=1;i<=n;i++) c[i]=read(),insert(i+n*n,t,c[i]);
for (int i=1;i<=n;i++)
for (int j=1;j<=n;j++)
{
insert((i-1)*n+j,i+n*n,inf);
insert((i-1)*n+j,j+n*n,inf);
}
sum-=dinic();
cout<<sum;
return 0;
}
洛谷3973 TJOI2015线性代数(最小割+思维)的更多相关文章
- bzoj 3996: [TJOI2015]线性代数 [最小割]
3996: [TJOI2015]线性代数 题意:给出一个NN的矩阵B和一个1N的矩阵C.求出一个1*N的01矩阵A.使得 \(D=(A * B-C)* A^T\)最大.其中A^T为A的转置.输出D.每 ...
- 【洛谷P3329】 [ZJOI2011]最小割(最小割树)
洛谷 题意: 给出一个无向图,之后有\(q,q\leq 30\)组询问,每组询问有一个\(x\),回答有多少点对\((a,b)\)其\(a-b\)最小割不超过\(x\). 思路: 这个题做法要最小割树 ...
- 洛谷P3973 - [TJOI2015]线性代数
Portal Description 给定一个\(n\times n\)的矩阵\(B\)和一个\(1×n\)的矩阵\(C\).求出一个\(1×n\)的01矩阵\(A\),使得\(D=(A×B-C)×A ...
- [TJOI2015]线性代数(最小割)
题目描述 给出一个N*N的矩阵B和一个1*N的矩阵C.求出一个1*N的01矩阵A.使得 D=(A*B-C)*A^T最大.其中A^T为A的转置.输出D 题解 观察上面那个式子发现,当一个bij有贡献时当 ...
- BZOJ3996[TJOI2015]线性代数——最小割
题目描述 给出一个N*N的矩阵B和一个1*N的矩阵C.求出一个1*N的01矩阵A.使得 D=(A*B-C)*A^T最大.其中A^T为A的转置.输出D 输入 第一行输入一个整数N,接下来N行输入B矩阵, ...
- bzoj 3996 [TJOI2015]线性代数——最小割
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3996 b[ i ][ j ] 要计入贡献,当且仅当 a[ i ] = 1 , a[ j ] ...
- [Luogu 3973] TJOI2015 线性代数
[Luogu 3973] TJOI2015 线性代数 这竟然是一道最小割模型. 据说是最大权闭合子图. 先把矩阵式子推出来. 然后,套路建模就好. #include <algorithm> ...
- 洛谷P4014 分配问题【最小/大费用流】题解+AC代码
洛谷P4014 分配问题[最小/大费用流]题解+AC代码 题目描述 有 n 件工作要分配给 n 个人做.第 i 个人做第 j 件工作产生的效益为c ij. 试设计一个将 n 件工作分配给 n 个人做的 ...
- 【BZOJ-3996】线性代数 最小割-最大流
3996: [TJOI2015]线性代数 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 1054 Solved: 684[Submit][Statu ...
随机推荐
- 查询ES6兼容的网站
http://kangax.github.io/compat-table/es6/ 查询es6兼容的网站
- linux shell 删除满足正则表达式的文件
用find配合xargs rm find . -type f -name "to_delete_file_[a-z]_*_[0-9].jpg" | xargs rm
- tensorflow saver简介+Demo with linear-model
tf.train.Saver提供Save和Restore Tensorflow变量的功能,常用于保存.还原模型训练结果,这在自己的训练和迁移学习中都很有用. 训练.保存脚本: import tenso ...
- Spring源码浅析之bean实例的创建过程(二)
在上一篇内容中,介绍了doGetBean方法的源码内容,知道了bean在创建的过程中,有三个范围,单例.多例.Scope,里面都使用到了createBean.下面本篇文章的主要内容,就是围绕creat ...
- 前端使用a标签启动本地.exe程序
目录 1,需求 2,效果图 3,实现原理 4,代码 5,注意事项 1,需求 最近有一个需求,在web页面上有一个按钮,点击按钮,调起本地的.exe程序客户端,我在网上找了很多,感觉都不完整,所以自己总 ...
- Python之uiautomation模块-获取CMD窗口中所打印的文字信息
当我们想以自动化的方式操作软件,以提高办公或测试效率时,有许多成熟的工具,比如针对Web端应用的Selenium.针对移动端应用的Appium.那么,PC端(Windows)桌面应用,又改如何处理呢? ...
- client-go实战之五:DiscoveryClient
欢迎访问我的GitHub https://github.com/zq2599/blog_demos 内容:所有原创文章分类汇总及配套源码,涉及Java.Docker.Kubernetes.DevOPS ...
- NOIP模拟「random·string·queen」
T1:random 我又来白剽博客了: 详细证明请看土哥 土哥写的不是很详细,我在这里详细写一下: 首先,对于f[n]的式子: 加一是那一个对的贡献,大C是选其余的几个数,\(2^ ...
- Vs code自动生成Doxygen格式注释
前言 程序中注释的规范和统一性的重要性不言而喻,本文就推荐一种在用vscode编写代码时自动化生成标准化注释格式的方法,关于Doxygen规范及其使用可查看博文 代码注释规范之Doxygen. ...
- java多线程 synchronized 与lock锁 实现线程安全
如果有多个线程在同时运行,而这些线程可能会同时运行这段代码.程序每次运行结果和单线程运行的结果是一样的,而且其他的变量的值也和预期的是一样的,就是线程安全的. 通过卖火车票的例子 火车站要卖票,我们模 ...