前言

在Python中,计算密集型任务适用于多进程,IO密集型任务适用于多线程

 

正常来讲,多线程要比多进程效率更高,因为进程间的切换需要的资源和开销更大,而线程相对更小,但是我们使用的Python大多数的解释器是Cpython,众所周知Cpython有个GIL锁,导致执行计算密集型任务时多线程实际只能是单线程,而且由于线程之间切换的开销导致多线程往往比实际的单线程还要慢,所以在 python 中计算密集型任务通常使用多进程,因为各个进程有各自独立的GIL,互不干扰。

 

而在IO密集型任务中,CPU时常处于等待状态,操作系统需要频繁与外界环境进行交互,如读写文件,在网络间通信等。在这期间GIL会被释放,因而就可以使用真正的多线程。

 

上面都是理论,接下来实战看看实际效果是否符合理论

练习

"""多线程多进程模拟执行效率"""

from multiprocessing import Pool
from threading import Thread
import time, math def simulation_IO(a):
"""模拟IO操作"""
time.sleep(3) def simulation_compute(a):
"""模拟计算密集型任务"""
for i in range(int(1e7)):
math.sin(40) + math.cos(40)
return def normal_func(func):
"""普通方法执行效率"""
for i in range(6):
func(i)
return def mp(func):
"""进程池中的map方法"""
with Pool(processes=6) as p:
res = p.map(func, list(range(6)))
return def asy(func):
"""进程池中的异步执行"""
with Pool(processes=6) as p:
result = []
for j in range(6):
a = p.apply_async(func, args=(j, ))
result.append(a)
res = [j.get() for j in result] def thread(func):
"""多线程方法"""
threads = []
for j in range(6):
t = Thread(target=func, args=(j, ))
threads.append(t)
t.start()
for t in threads:
t.join() def showtime(f, func, name):
"""
计算并展示函数的运行时间
:param f: 多进程和多线程的方法
:param func: 多进程和多线程方法中需要传入的函数
:param name: 方法的名字
:return:
"""
start_time = time.time()
f(func)
print(f"{name} time: {time.time() - start_time:.4f}s") def main(func):
"""
运行程序的主函数
:param func: 传入需要计算时间的函数名
"""
showtime(normal_func, func, "normal")
print()
print("------ 多进程 ------")
showtime(mp, func, "map")
showtime(asy, func, "async")
print()
print("----- 多线程 -----")
showtime(thread, func, "thread") if __name__ == "__main__":
print("------------ 计算密集型 ------------")
func = simulation_compute
main(func)
print()
print()
print()
print("------------ IO 密集型 ------------")
func = simulation_IO
main(func)

结果

线性执行 多进程(map) 多进程(async) 多线程
计算密集型 16.0284s 3.5236s 3.4367s 15.2142s
IO密集型 18.0201s 3.0945s 3.0809s 3.0041s

结论

从表格中很明显的可以看出:

  • 计算密集型任务的速度:多进程 >多线程> 单进程/线程
  • IO密集型任务速度: 多线程 > 多进程 > 单进程/线程。

所以,针对计算密集型任务使用多进程,针对IO密集型任务使用多线程

python进阶(15)多线程与多进程效率测试的更多相关文章

  1. Python进阶:多线程、多进程和线程池编程/协程和异步io/asyncio并发编程

    gil: gil使得同一个时刻只有一个线程在一个CPU上执行字节码,无法将多个线程映射到多个CPU上执行 gil会根据执行的字节码行数以及时间片释放gil,gil在遇到io的操作时候主动释放 thre ...

  2. python分别使用多线程和多进程获取所有股票实时数据

    python分别使用多线程和多进程获取所有股票实时数据   前一天简单介绍了python怎样获取历史数据和实时分笔数据,那么如果要获取所有上市公司的实时分笔数据,应该怎么做呢? 肯定有人想的是,用一个 ...

  3. python爬虫之多线程、多进程+代码示例

    python爬虫之多线程.多进程 使用多进程.多线程编写爬虫的代码能有效的提高爬虫爬取目标网站的效率. 一.什么是进程和线程 引用廖雪峰的官方网站关于进程和线程的讲解: 进程:对于操作系统来说,一个任 ...

  4. 第十章:Python高级编程-多线程、多进程和线程池编程

    第十章:Python高级编程-多线程.多进程和线程池编程 Python3高级核心技术97讲 笔记 目录 第十章:Python高级编程-多线程.多进程和线程池编程 10.1 Python中的GIL 10 ...

  5. python中的多线程和多进程

    一.简单理解一下线程和进程 一个进程中可有多个线程,线程之间可共享内存,进程间却是相互独立的.打比方就是,进程是火车,线程是火车厢,车厢内人员可以流动(数据共享) 二.python中的多线程和多进程 ...

  6. Python之threading多线程,多进程

    1.threading模块是Python里面常用的线程模块,多线程处理任务对于提升效率非常重要,先说一下线程和进程的各种区别,如图 概括起来就是 IO密集型(不用CPU) 多线程计算密集型(用CPU) ...

  7. Python系列之多线程、多进程

    线程是操作系统直接支持的执行单元,因此,高级语言通常都内置多线程的支持,Python也不例外,并且,Python的线程是真正的Posix Thread,而不是模拟出来的线程. Python的标准库提供 ...

  8. python爬虫之多线程、多进程、GIL锁

    背景: 我们知道多线程要比多进程效率更高,因为线程存在于进程之内,打开一个进程的话,首先需要开辟内存空间,占用内存空间比线程大.这样想也不怪,比如一个进程用10MB,开10个进程就得100MB的内存空 ...

  9. python之路-----多线程与多进程

    一.进程和线程的概念 1.进程(最小的资源单位): 进程:就是一个程序在一个数据集上的一次动态执行过程.进程一般由程序.数据集.进程控制块三部分组成. 程序:我们编写的程序用来描述进程要完成哪些功能以 ...

随机推荐

  1. 020_CSS3

    目录 如何学习CSS 什么是CSS 发展史 快速入门 css的优势 三种CSS导入方式 拓展:外部样式两种写法 选择器 基本选择器 层次选择器 结构伪类选择器 属性选择器 美化网页元素 为什么要美化网 ...

  2. ElementUI使用总结

    首先声明,我这总结的官网都有,只是将自己使用时遇到的问题,重新记录一下,官网地址:https://element.eleme.cn/ 1.表格内指定行数给定不同样式(类似于隔行变色,也能叫指定行数不同 ...

  3. JAVA基础(零)—— 踩坑与错误(常更)

    JAVA基础(零)-- 踩坑与错误(常更) 1 坑 考虑输入为null的情况 自动转换 x/Math.pow(10,i)*Math.pow(10,i) //由于math.pow()返回double类型 ...

  4. 后端程序员之路 37、Akka、Actor、Scala初窥

    Akkahttp://akka.io/ Akka 是一个用 Scala 编写的库,用于简化编写容错的.高可伸缩性的 Java 和 Scala 的 Actor 模型应用,是一个广泛运用的分布式应用框架. ...

  5. 后端程序员之路 18、朴素贝叶斯模型(Naive Bayesian Model,NBM)

    贝叶斯推断及其互联网应用(一):定理简介 - 阮一峰的网络日志http://www.ruanyifeng.com/blog/2011/08/bayesian_inference_part_one.ht ...

  6. 死磕Spring之IoC篇 - Bean 的创建过程

    该系列文章是本人在学习 Spring 的过程中总结下来的,里面涉及到相关源码,可能对读者不太友好,请结合我的源码注释 Spring 源码分析 GitHub 地址 进行阅读 Spring 版本:5.1. ...

  7. 简单的webRTC连接测试

    webRTC WebRTC (Web Real-Time Communications) 是一项实时通讯技术,它允许网络应用或者站点,在不借助中间媒介的情况下,建立浏览器之间点对点(Peer-to-P ...

  8. MMA CTF 2nd 2016-greeting

    目录 MMA CTF 2nd 2016-greeting 总结 题目分析 checksec 函数分析 漏洞点 知识点 利用思路 EXP 完整Exp MMA CTF 2nd 2016-greeting ...

  9. php伪协议分析与CTF例题讲解

                本文大量转载于:https://blog.csdn.net/qq_41289254/article/details/81388343 (感谢博主) 一,php://  访问输入 ...

  10. WPF 基础 - 图片与 base64

    1. base64 转图片 将 base64 转成 byte[] 将 byte[] 作为内存流保存到一个 BitmapImage 实例的流的源 把 BitmapImage 作为目标图片的 Source ...