前言

在Python中,计算密集型任务适用于多进程,IO密集型任务适用于多线程

 

正常来讲,多线程要比多进程效率更高,因为进程间的切换需要的资源和开销更大,而线程相对更小,但是我们使用的Python大多数的解释器是Cpython,众所周知Cpython有个GIL锁,导致执行计算密集型任务时多线程实际只能是单线程,而且由于线程之间切换的开销导致多线程往往比实际的单线程还要慢,所以在 python 中计算密集型任务通常使用多进程,因为各个进程有各自独立的GIL,互不干扰。

 

而在IO密集型任务中,CPU时常处于等待状态,操作系统需要频繁与外界环境进行交互,如读写文件,在网络间通信等。在这期间GIL会被释放,因而就可以使用真正的多线程。

 

上面都是理论,接下来实战看看实际效果是否符合理论

练习

"""多线程多进程模拟执行效率"""

from multiprocessing import Pool
from threading import Thread
import time, math def simulation_IO(a):
"""模拟IO操作"""
time.sleep(3) def simulation_compute(a):
"""模拟计算密集型任务"""
for i in range(int(1e7)):
math.sin(40) + math.cos(40)
return def normal_func(func):
"""普通方法执行效率"""
for i in range(6):
func(i)
return def mp(func):
"""进程池中的map方法"""
with Pool(processes=6) as p:
res = p.map(func, list(range(6)))
return def asy(func):
"""进程池中的异步执行"""
with Pool(processes=6) as p:
result = []
for j in range(6):
a = p.apply_async(func, args=(j, ))
result.append(a)
res = [j.get() for j in result] def thread(func):
"""多线程方法"""
threads = []
for j in range(6):
t = Thread(target=func, args=(j, ))
threads.append(t)
t.start()
for t in threads:
t.join() def showtime(f, func, name):
"""
计算并展示函数的运行时间
:param f: 多进程和多线程的方法
:param func: 多进程和多线程方法中需要传入的函数
:param name: 方法的名字
:return:
"""
start_time = time.time()
f(func)
print(f"{name} time: {time.time() - start_time:.4f}s") def main(func):
"""
运行程序的主函数
:param func: 传入需要计算时间的函数名
"""
showtime(normal_func, func, "normal")
print()
print("------ 多进程 ------")
showtime(mp, func, "map")
showtime(asy, func, "async")
print()
print("----- 多线程 -----")
showtime(thread, func, "thread") if __name__ == "__main__":
print("------------ 计算密集型 ------------")
func = simulation_compute
main(func)
print()
print()
print()
print("------------ IO 密集型 ------------")
func = simulation_IO
main(func)

结果

线性执行 多进程(map) 多进程(async) 多线程
计算密集型 16.0284s 3.5236s 3.4367s 15.2142s
IO密集型 18.0201s 3.0945s 3.0809s 3.0041s

结论

从表格中很明显的可以看出:

  • 计算密集型任务的速度:多进程 >多线程> 单进程/线程
  • IO密集型任务速度: 多线程 > 多进程 > 单进程/线程。

所以,针对计算密集型任务使用多进程,针对IO密集型任务使用多线程

python进阶(15)多线程与多进程效率测试的更多相关文章

  1. Python进阶:多线程、多进程和线程池编程/协程和异步io/asyncio并发编程

    gil: gil使得同一个时刻只有一个线程在一个CPU上执行字节码,无法将多个线程映射到多个CPU上执行 gil会根据执行的字节码行数以及时间片释放gil,gil在遇到io的操作时候主动释放 thre ...

  2. python分别使用多线程和多进程获取所有股票实时数据

    python分别使用多线程和多进程获取所有股票实时数据   前一天简单介绍了python怎样获取历史数据和实时分笔数据,那么如果要获取所有上市公司的实时分笔数据,应该怎么做呢? 肯定有人想的是,用一个 ...

  3. python爬虫之多线程、多进程+代码示例

    python爬虫之多线程.多进程 使用多进程.多线程编写爬虫的代码能有效的提高爬虫爬取目标网站的效率. 一.什么是进程和线程 引用廖雪峰的官方网站关于进程和线程的讲解: 进程:对于操作系统来说,一个任 ...

  4. 第十章:Python高级编程-多线程、多进程和线程池编程

    第十章:Python高级编程-多线程.多进程和线程池编程 Python3高级核心技术97讲 笔记 目录 第十章:Python高级编程-多线程.多进程和线程池编程 10.1 Python中的GIL 10 ...

  5. python中的多线程和多进程

    一.简单理解一下线程和进程 一个进程中可有多个线程,线程之间可共享内存,进程间却是相互独立的.打比方就是,进程是火车,线程是火车厢,车厢内人员可以流动(数据共享) 二.python中的多线程和多进程 ...

  6. Python之threading多线程,多进程

    1.threading模块是Python里面常用的线程模块,多线程处理任务对于提升效率非常重要,先说一下线程和进程的各种区别,如图 概括起来就是 IO密集型(不用CPU) 多线程计算密集型(用CPU) ...

  7. Python系列之多线程、多进程

    线程是操作系统直接支持的执行单元,因此,高级语言通常都内置多线程的支持,Python也不例外,并且,Python的线程是真正的Posix Thread,而不是模拟出来的线程. Python的标准库提供 ...

  8. python爬虫之多线程、多进程、GIL锁

    背景: 我们知道多线程要比多进程效率更高,因为线程存在于进程之内,打开一个进程的话,首先需要开辟内存空间,占用内存空间比线程大.这样想也不怪,比如一个进程用10MB,开10个进程就得100MB的内存空 ...

  9. python之路-----多线程与多进程

    一.进程和线程的概念 1.进程(最小的资源单位): 进程:就是一个程序在一个数据集上的一次动态执行过程.进程一般由程序.数据集.进程控制块三部分组成. 程序:我们编写的程序用来描述进程要完成哪些功能以 ...

随机推荐

  1. JS相关基础

    1. ES5和ES6继承方式区别 ES5定义类以函数形式, 以prototype来实现继承 ES6以class形式定义类, 以extend形式继承 2. Generator了解 ES6 提供的一种异步 ...

  2. 不能回滚的Redis事务还能用吗

    前言 事务是关系型数据库的特征之一,那么作为 Nosql 的代表 Redis 中有事务吗?如果有,那么 Redis 当中的事务又是否具备关系型数据库的 ACID 四大特性呢? Redis 有事务吗 这 ...

  3. Java基本概念:类

    一.描述 类是一种抽象的数据类型,它是对某一类事物整体的描述或定义,但是并不能代表某一个具体的事物. 例如,我们生活中所说的词语:动物.植物.手机.电脑等等.这些也都是抽象的概念,而不是指的某一个 具 ...

  4. 死磕hyperledger fabric源码|Order节点概述

    死磕hyperledger fabric源码|Order节点概述 文章及代码:https://github.com/blockchainGuide/ 分支:v1.1.0 前言及源码目录 Orderer ...

  5. 设置ViewPager 自动滑动时间,速度 方便展示动画

    ViewPager.setCurrentItem(position),即使已设置动画,但是没有动画效果 原因:因为ViewPager滑动之前的时间间隔太短,可以通过反射,去修改ViewPager自动滑 ...

  6. Newbe.Claptrap 框架入门,第一步 —— 开发环境准备

    Newbe.Claptrap 框架依托于一些关键性的基础组件和一些可选的辅助组件.本篇我们来介绍一下如何准备一个开发环境. Newbe.Claptrap 是一个用于轻松应对并发问题的分布式开发框架.如 ...

  7. 后端程序员之路 36、Apache Kafka

    Apache Kafkahttp://kafka.apache.org/ Kafka,很容易就联想到<海边的卡夫卡>,文艺程度和Casablanca有得一拼.Kafka是一个分布式消息系统 ...

  8. 一文了解Python的迭代器的实现

    本文对迭代器的解释参考自:https://www.programiz.com/python-programming/iterator 最后自己使用迭代器实现一个公平洗牌类. 博主认为,理论来自实践,假 ...

  9. 基于Hi3559AV100 RFCN实现细节解析-(1)VGS初介绍

    下面随笔系列将对Hi3559AV100 RFCN实现细节进行解析,因为RFCN用到了VGS加框,因此本篇随笔将给出VGS视频图像子系统的具体说明,便于后面RFCN的细节实现说明. VGS 是视频图形子 ...

  10. 漏洞复现-CVE-2016-4437-Shiro反序列化

        0x00 实验环境 攻击机:Win 10 靶机也可作为攻击机:Ubuntu18 (docker搭建的vulhub靶场)(兼顾反弹shell的攻击机) 0x01 影响版本 Shiro <= ...