常用的库有time、datetime。其中datetime库是对time库的封装,所以使用起来更加便捷。date是指日期时间(年月日)处理,time往往更加细小的单位(小时分秒等)的时间处理。

一、datetime

  • datetime.date

表示日期的类,常用的属性有year、month、day。参数都为整数。

import datetime 

#任何一天
someday = datetime.date(year=2018,month=1,day=1)
someday
datetime.date(2018, 1, 1)

日期的标准化格式符号

%a  星期的简写。如 星期三为Web
%A  星期的全写。如 星期三为Wednesday
%b  月份的简写。如4月份为Apr
%B  月份的全写。如4月份为April 
%c:  日期时间的字符串表示。(如: 04/07/10 10:43:39
%d:  日在这个月中的天数(是这个月的第几天)
%f:  微秒(范围[0,999999]
%H:  小时(24小时制,[0, 23]
%I:  小时(12小时制,[0, 11]
%j:  日在年中的天数 [001,366](是当年的第几天)
%m:  月份([01,12]
%M:  分钟([00,59]
%p:  AM或者PM
%S:  秒(范围为[00,61],为什么不是[00, 59]
%U:  周在当年的周数当年的第几周),星期天作为周的第一天
%w:  今天在这周的天数,范围为[0, 6],6表示星期天
%W:  周在当年的周数(是当年的第几周),星期一作为周的第一天
%x:  日期字符串(如:04/07/10
%X:  时间字符串(如:10:43:39
%y:  2个数字表示的年份
%Y:  4个数字表示的年份
%z:  与utc时间的间隔 (如果是本地时间,返回空字符串)
%Z:  时区名称(如果是本地时间,返回空字符串)

以规定的格式返回。

print(someday.strftime('%Y-%m-%d'))
2018-01-01 print(someday.strftime('%Y/%m/%d'))
2018/01/01

生成如‘2018-01-01’

someday.isoformat()
'2018-01-01'

今天

datetime.date.today()
datetime.date(2018, 2, 27)

根据给定的时间戮,返回一个date对象

import time

datetime.date.fromtimestamp(time.time())
datetime.date(2018, 1, 4)
  • datetime.time

表示时间的类,参数包括hour、minute、second、microsecond。 time类的方法同datetime类。

看看isoformatstrftime方法会返回什么

sometime = datetime.time(hour=12,minute=50,second=12,microsecond=10)
sometime
datetime.time(12, 50, 12, 10)

时间的格式化处理

print(sometime.isoformat())
12:50:12.000010 print(sometime.strftime('%H:%M:%S'))
12:50:12 print(sometime.strftime('%H::%M::%S'))
12::50::12
  • datetime.datetime

日期实践类,常用的参数包含year、month、day、hour、minute、second、microsecond。但是至少要包含year、month、day三个参数。

datetime.datetime(year=2018,month=1,day=1,hour=12,minute=50,second=12,microsecond=10)
datetime.datetime(2018, 1, 1, 12, 50, 12, 10)

只含有年月日

datetime.datetime(2018,1,1)
datetime.datetime(2018, 1, 1, 0, 0)

看看isoformatstrftime方法会返回什么

somedatetime = datetime.datetime(2018,1,1) 

#isoformat、strftime
print(somedatetime.isoformat())
2018-01-01T00:00:00 print(somedatetime.strftime('%Y-%m-%d %H:%M:%S'))
2018-01-01 00:00:00
  • datetime.timedelta

表示时间间隔类,给一个时间点加上此类,即可得到一个新的时间。参数包含days、hours、minutes、seconds、microseconds。

#1天零1小时零1分零1秒又10毫秒的时间间隔 

datetime.timedelta(days=1,hours=1,minutes=1,seconds=1,microseconds=10)
datetime.timedelta(1, 3661, 10)

35天间隔

datetime.timedelta(days=35)
datetime.timedelta(35)

现在+/-时间间隔操作

print(datetime.datetime.now())
2018-01-04 23:59:37.437627 print(datetime.datetime.now()+datetime.timedelta(days=35))
2018-02-08 23:59:37.438283 print(datetime.datetime.now()-datetime.timedelta(days=35))
2017-11-30 23:59:37.438775 print(datetime.datetime.now()-datetime.timedelta(hours=10))
2018-01-04 13:59:37.438987 print(datetime.datetime.now()-datetime.timedelta(hours=10,days=1))
2018-01-03 13:59:37.439190

二、time

常用的方法有time、localtime

import time

timestamp = time.time()
print('时间戳: ',timestamp)
时间戳: 1515081476.966094 locaoltime = time.localtime(timestamp)
print('当地时间: ',locaoltime)
当地时间: time.struct_time(tm_year=2018, tm_mon=1, tm_mday=4, tm_hour=23, tm_min=57, tm_sec=56, tm_wday=3, tm_yday=4, tm_isdst=0) #转化为有格式的时间,如只显示年月日
print(time.strftime('%Y-%m-%d %H:%M:%S',locaoltime))
2018-01-04 23:57:56

三、pandas库时间处理函数

获取当前时间,并返回年月日规范格式。形如 2017-01-04

常用的方法有:

pd.date_range() 生成一个时间段
pd.bdate_range() 生成一个时间段,跟date_range()不同,可见下面代码
df.asfreq() 生成以一定时间间隔的序列
  • 根据始末时间生成时间段

pd.date_range(start, end, freq) 生成一个时间段

freq参数由英文(M D H Min 。。。)、英文数字结合。D表示一天,M表示一月如20D表示20天,5M表示5个月。

#生成20171011-20171030
pd.date_range('20171011', '20171030',freq='5D')
DatetimeIndex(['2017-10-11', '2017-10-16', '2017-10-21', '2017-10-26'], dtype='datetime64[ns]', freq='5D')
  • 根据起始向后生成时间段

pd.date_range(日期字符串, periods=5, freq='T') 生成一个时间段

periods 时间段长度,整数类型

freq 时间单位。月日时分秒。M D H ...

import pandas as pd
#20171231 12:50时间点开始,生成以月为间隔,长度为5的时间段
tm_rng = pd.date_range('20171231 12:50',periods=5,freq='M') print(type(tm_rng))
DatetimeIndex(['2017-12-31 12:50:00', '2018-01-31 12:50:00','2018-02-28 12:50:00', '2018-03-31 12:50:00', print(tm_rng)
<class 'pandas.core.indexes.datetimes.DatetimeIndex'>
'2018-04-30 12:50:00'],dtype='datetime64[ns]', freq='M')
  • 根据给定时间点向前(向后)生成时间段

pd.bdate_range(end,periods,freq) 根据end时间点开始,以freq为单位,向前生成周期为period的时间序列

pd.bdate_range(start,periods,freq) 根据start时间点开始,以freq为单位,向后生成周期为period的时间序列

#向前5天
print(pd.bdate_range(end='20180101',periods=5,freq='D'))
DatetimeIndex(['2017-12-28', '2017-12-29', '2017-12-30', '2017-12-31','2018-01-01'],dtype='datetime64[ns]', freq='D') #向后5天
print(pd.bdate_range(start='20180101',periods=5,freq='D'))
DatetimeIndex(['2018-01-01', '2018-01-02', '2018-01-03', '2018-01-04','2018-01-05'],dtype='datetime64[ns]', freq='D')

改变时间间隔

对dateframe或者series对象操作,更改对象中时间的时间间隔。
dateframe.asfreq(freq='时间间隔',method='填充方式',fill_value='对Nan值进行填充')
freq格式:M D H Min 。。。与数字结合。如20D表示20天,5M表示5个月。 
method:有pad、backfill两种填充方式
fill_value:缺失值更改为fill_value的值。
#改变时间间隔,以20天为间隔
tm_series.asfreq('20D',method='pad')
2017-12-31 12:50:00 0
2018-01-20 12:50:00 0
2018-02-09 12:50:00 1
2018-03-01 12:50:00 2
2018-03-21 12:50:00 2
2018-04-10 12:50:00 3
2018-04-30 12:50:00 4
Freq: 20D, dtype: int64 #改变时间间隔,以20天为间隔
tm_series.asfreq('20D',method='backfill')
2017-12-31 12:50:00 0
2018-01-20 12:50:00 1
2018-02-09 12:50:00 2
2018-03-01 12:50:00 3
2018-03-21 12:50:00 3
2018-04-10 12:50:00 4
2018-04-30 12:50:00 4
Freq: 20D, dtype: int64 #改变时间间隔,以100小时为间隔
tm_series.asfreq('100H')
2017-12-31 12:50:00 0.0
2018-01-04 16:50:00 NaN
2018-01-08 20:50:00 NaN
2018-01-13 00:50:00 NaN
.....
2018-04-10 12:50:00 NaN
2018-04-14 16:50:00 NaN
2018-04-18 20:50:00 NaN
2018-04-23 00:50:00 NaN
2018-04-27 04:50:00 NaN
Freq: 100H, dtype: float64 #改变时间间隔,以100小时为间隔
tm_series.asfreq('100H',fill_value='缺失值')
2017-12-31 12:50:00 0
2018-01-04 16:50:00 缺失值
2018-01-08 20:50:00 缺失值
2018-01-13 00:50:00 缺失值
.....
2018-04-14 16:50:00 缺失值
2018-04-18 20:50:00 缺失值
2018-04-23 00:50:00 缺失值
2018-04-27 04:50:00 缺失值
Freq: 100H, dtype: object
  • 可以统一日期格式

data = pd.Series(['May 20, 2017','2017-07-12','20170930','2017/10/11','2017 12 11']) 

pd.to_datetime(data)
0 2017-05-20
1 2017-07-12
2 2017-09-30
3 2017-10-11
4 2017-12-11
dtype: datetime64[ns]
  • 提取指定日期的数据

如下tm_rng是以5小时时间间隔,生成了20个数据。我们只要2018-01-02的数据。对Series或Dataframe都可以使用日期字符串操作,选取指定时间范围的数据。

import pandas as pd
import numpy as np tm_rng = pd.date_range('2017-12-31 12:00:00',periods=20,freq='5H')
tm_series = pd.Series(np.random.randn(len(tm_rng)), index=tm_rng)
print(type(tm_series)) print(tm_series)
<class 'pandas.core.series.Series'>
2017-12-31 12:00:00 0.618465
2017-12-31 17:00:00 -0.963631
2017-12-31 22:00:00 -0.782348
.....
2018-01-04 06:00:00 -0.681123
2018-01-04 11:00:00 -0.710626
Freq: 5H, dtype: floa64 #我们只要tm_series中是2018-01-02的数据
tm_series['2018-01-02']
2018-01-02 04:00:00 0.293941
2018-01-02 09:00:00 -1.437363
2018-01-02 14:00:00 -0.527275
2018-01-02 19:00:00 1.140872
Freq: 5H, dtype: float64 #我们要2018年的数据,结果全保留
tm_series['2018']
2018-01-01 03:00:00 -0.363019
2018-01-01 08:00:00 0.426922
2018-01-01 13:00:00 -1.118425
2018-01-01 18:00:00 0.956300
.....
2018-01-03 20:00:00 -1.967839
2018-01-04 01:00:00 -0.654029
2018-01-04 06:00:00 -0.681123
2018-01-04 11:00:00 -0.710626
Freq: 5H, dtype: float64
dft = pd.DataFrame(np.random.randn(len(tm_rng)), index=tm_rng) print(type(dft))
print(dft)
<class 'pandas.core.frame.DataFrame'> 2017-12-31 12:00:00 0.213331
2017-12-31 17:00:00 1.920131
2017-12-31 22:00:00 -1.608645
2018-01-01 03:00:00 -0.226439
2018-01-01 08:00:00 -0.558741
..... 2018-01-03 20:00:00 0.866822
2018-01-04 01:00:00 -0.361902
2018-01-04 06:00:00 0.902717
2018-01-04 11:00:00 -0.431569 #对dataframe中的时间操作,只要2018-01-04日的数据
print(type(dft['2018-01-04']))
print(dft['2018-01-04'])
<class 'pandas.core.frame.DataFrame'> 2018-01-04 01:00:00 -0.361902
2018-01-04 06:00:00 0.902717
2018-01-04 11:00:00 -0.431569

Python中处理日期时间库的使用方法的更多相关文章

  1. Python中处理日期时间库的使用方法(转载)

    <本文来自公众号“大邓带你玩python”,转载> 用百分之20时间,学会解决百分之80的问题. 常用的库有time.datetime.其中datetime库是对time库的封装,所以使用 ...

  2. Python中使用模块和库编程

    """ python中使用模块和库编程 导入模块 import modulename [as alias] from modulename import fun1,fun ...

  3. Python中导入第三方声源库Acoular的逻辑解释以及Acoular的下载

    [声明]欢迎转载,但请保留文章原始出处→_→ 秦学苦练:http://www.cnblogs.com/Qinstudy/ 文章来源:http://www.cnblogs.com/Qinstudy/p/ ...

  4. Java8新特性探索之新日期时间库

    一.为什么引入新的日期时间库 Java对日期,日历及时间的处理一直以来都饱受诟病,尤其是它决定将java.util.Date定义为可修改的以及将SimpleDateFormat实现成非线程安全的. 关 ...

  5. Android中关于日期时间与时区的使用总结

    在开发Android的过程中,出现过几次由于日期时间导致的问题,而且主要是由于时区的原因导致,所以一直想总结一下,形成一个良好的开发规范.   一.Unix时间戳   Unix时间戳(Unix tim ...

  6. 在mysql数据库中关于日期时间字段的处理

    在mysql数据库中关于日期时间字段的处理 在开发中,日期时间字段一般有如下几种设计 假设要获取2013-08-15日到2013-08-16日之间的记录 1. 直接使用日期时间类字段 相关sql语句如 ...

  7. js非常强大的日历控件fullcalendar.js, 日期时间库: moment.js

    日历控件: https://fullcalendar.io/docs/ https://fullcalendar.io/docs/event_data/events_function/ https:/ ...

  8. 使用ctypes在Python中调用C++动态库

    使用ctypes在Python中调用C++动态库 入门操作 使用ctypes库可以直接调用C语言编写的动态库,而如果是调用C++编写的动态库,需要使用extern关键字对动态库的函数进行声明: #in ...

  9. python中常用的时间操作

    python中常用的时间模块有time和datetime,以下是这两个模块中常用的方法: #先引入模块 import timefrom datetime import datetiem, timezo ...

随机推荐

  1. Gumbel distribution

    目录 概 主要内容 定义 Gumbel-Max trick Gumbel trick 用于归一化 代码 概 感觉这个分布的含义很有用啊, 能预测'最大', 也就是自然灾害, 太牛了. 主要内容 定义 ...

  2. vue打包之后动态修改请求接口方法

    1.可以根据自身情况封装获取配置文件接口信息 1.1我在static中新建一个config.json配置文件 { "DEV_URL":"/apis",//开发模 ...

  3. [opencv]求像素范围中最大值与最小值

    double minv = 0.0, maxv = 0.0; double* minp = &minv; double* maxp = &maxv; minMaxIdx(channel ...

  4. CS229 机器学习课程复习材料-概率论

    本文是斯坦福大学CS229机器学习课程的基础材料,原始文件下载 原文作者:Arian Maleki , Tom Do 翻译:石振宇 审核和修改制作:黄海广 备注:请关注github的更新. CS229 ...

  5. Java程序设计基础笔记 • 【第6章 循环结构进阶】

    全部章节   >>>> 本章目录 6.1 for循环 6.1.1 for循环的简介 6.1.2 for循环的使用 6.1.3 for循环的表达式 6.1.4 实践练习 6.2 ...

  6. 深入 Laravel 内核之 PHP 反射机制和依赖注入

    结论: PHP中提供了反射类来解析类的结构: 通过反射类可以获取到类的构造函数及其参数和依赖: 给构造函数的参数递归设置默认值后,即可使用这些带默认值的参数通过 newInstanceArgs 实例化 ...

  7. ElasticSearch、Kibana 介绍&安装

    目录 ElasticSearch 介绍 基于数据库查询的问题 倒排(反向)索引 ES 存储和查询的原理 ES 核心概念 ES 安装 Kibana ElasticSearch 介绍 基于数据库查询的问题 ...

  8. Linux7系统开通防火墙端口

    一.查看防火墙状态 查看防火墙状态 systemctl status firewalld 开启防火墙 systemctl start firewalld 关闭防火墙 systemctl stop fi ...

  9. django中的时区问题

    在django中设置时区,通过setting文件中的: TIME_ZONE = 'Asia/Shanghai' 开起多时区支持功能:USE_TZ=True 这时在数据库中插入的时间为UTC时间,当调用 ...

  10. Mysql设计遵循规则

    为什么要优化系统的吞吐量瓶颈往往出现在数据库的访问速度上随着应用程序的运行,数据库的中的数据会越来越多,处理时间会相应变慢数据是存放在磁盘上的,读写速度无法和内存相比 如何优化设计数据库时:数据库表. ...