Problem Statement

There are NN buildings along the AtCoder Street, numbered 11 through NN from west to east. Initially, Buildings 1,2,…,N1,2,…,N have the heights of A1,A2,…,ANA1,A2,…,AN, respectively.

Takahashi, the president of ARC Wrecker, Inc., plans to choose integers ll and rr (1≤l<r≤N)(1≤l<r≤N) and make the heights of Buildings l,l+1,…,rl,l+1,…,r all zero.
To do so, he can use the following two kinds of operations any number of times in any order:

  • Set an integer xx (l≤x≤r−1)(l≤x≤r−1) and increase the heights of Buildings xx and x+1x+1 by 11 each.
  • Set an integer xx (l≤x≤r−1)(l≤x≤r−1) and decrease the heights of Buildings xx and x+1x+1 by 11 each. This operation can only be done when both of those buildings have heights of 11 or greater.

Note that the range of xx depends on (l,r)(l,r).

How many choices of (l,r)(l,r) are there where Takahashi can realize his plan?

Constraints

  • 2≤N≤3000002≤N≤300000
  • 1≤Ai≤1091≤Ai≤109 (1≤i≤N)(1≤i≤N)
  • All values in input are integers.

Input

Input is given from Standard Input in the following format:

NN
A1A1 A2A2 ⋯⋯ ANAN

Output

Print the answer.


Sample Input 1

5
5 8 8 6 6

Sample Output 1

3

Takahashi can realize his plan for (l,r)=(2,3),(4,5),(2,5)(l,r)=(2,3),(4,5),(2,5).

For example, for (l,r)=(2,5)(l,r)=(2,5), the following sequence of operations make the heights of Buildings 2,3,4,52,3,4,5 all zero.

  • Decrease the heights of Buildings 44 and 55 by 11 each, six times in a row.
  • Decrease the heights of Buildings 22 and 33 by 11 each, eight times in a row.

For the remaining seven choices of (l,r)(l,r), there is no sequence of operations that can realize his plan.


Sample Input 2

7
12 8 11 3 3 13 2

Sample Output 2

3

Takahashi can realize his plan for (l,r)=(2,4),(3,7),(4,5)(l,r)=(2,4),(3,7),(4,5).

For example, for (l,r)=(3,7)(l,r)=(3,7), the following figure shows one possible solution.


Sample Input 3

10
8 6 3 9 5 4 7 2 1 10

Sample Output 3

1

Takahashi can realize his plan for (l,r)=(3,8)(l,r)=(3,8) only.


Sample Input 4

14
630551244 683685976 249199599 863395255 667330388 617766025 564631293 614195656 944865979 277535591 390222868 527065404 136842536 971731491

Sample Output 4

8

题意:

有 n 个数,每次可以将 a[x],a[x+1] 同时 +1/-1 ,问存在多少区间同时减为 0

题解:

直觉告诉我用差分来做,然后模拟出来的结果时间复杂度都是 O(n^2)

直到看到了 hu_tao 大佬的讨论,一语惊醒,每次操作一定是将一个奇数位和偶数位同时操作,所以无论怎么变一个区间想要同时变为 0,那么这个区间上奇数位置和偶数位置的加和是相同的;

所以将奇数位置处的值置为负数,利用同余定理,就可以找到任意一个连续的子段加和为 0

const int N=1e6+5;

    int n, m, _;
int i, j, k;
ll a[N];
map<ll,int> mp; signed main()
{
//IOS;
while(~sd(n)){
for(int i=1;i<=n;i++){
sll(a[i]);
if(i%2==0) a[i]=-a[i];
}
ll ans=0;
mp[0]++;
for(int i=1;i<=n;i++){
a[i]+=a[i-1];
if(mp[a[i]]) ans+=mp[a[i]];
mp[a[i]]++;
}
pll(ans);
mp.clear();
}
//PAUSE;
return 0;
}

AtCoder Regular Contest 119 C - ARC Wrecker 2(同余定理+思维)的更多相关文章

  1. AtCoder Regular Contest 094 (ARC094) CDE题解

    原文链接http://www.cnblogs.com/zhouzhendong/p/8735114.html $AtCoder\ Regular\ Contest\ 094(ARC094)\ CDE$ ...

  2. AtCoder Regular Contest 061

    AtCoder Regular Contest 061 C.Many Formulas 题意 给长度不超过\(10\)且由\(0\)到\(9\)数字组成的串S. 可以在两数字间放\(+\)号. 求所有 ...

  3. AtCoder Regular Contest 092

    AtCoder Regular Contest 092 C - 2D Plane 2N Points 题意: 二维平面上给了\(2N\)个点,其中\(N\)个是\(A\)类点,\(N\)个是\(B\) ...

  4. AtCoder Regular Contest 093

    AtCoder Regular Contest 093 C - Traveling Plan 题意: 给定n个点,求出删去i号点时,按顺序从起点到一号点走到n号点最后回到起点所走的路程是多少. \(n ...

  5. AtCoder Regular Contest 094

    AtCoder Regular Contest 094 C - Same Integers 题意: 给定\(a,b,c\)三个数,可以进行两个操作:1.把一个数+2:2.把任意两个数+1.求最少需要几 ...

  6. AtCoder Regular Contest 095

    AtCoder Regular Contest 095 C - Many Medians 题意: 给出n个数,求出去掉第i个数之后所有数的中位数,保证n是偶数. \(n\le 200000\) 分析: ...

  7. AtCoder Regular Contest 102

    AtCoder Regular Contest 102 C - Triangular Relationship 题意: 给出n,k求有多少个不大于n的三元组,使其中两两数字的和都是k的倍数,数字可以重 ...

  8. AtCoder Regular Contest 096

    AtCoder Regular Contest 096 C - Many Medians 题意: 有A,B两种匹萨和三种购买方案,买一个A,买一个B,买半个A和半个B,花费分别为a,b,c. 求买X个 ...

  9. AtCoder Regular Contest 097

    AtCoder Regular Contest 097 C - K-th Substring 题意: 求一个长度小于等于5000的字符串的第K小子串,相同子串算一个. K<=5. 分析: 一眼看 ...

随机推荐

  1. Ubuntu20.04安装Redis

    本文介绍了如何在Ubuntu20.04上安装Redis. 安装Redis sudo apt install redis-server 检查服务的状态 安装完成后可以通过以下命令检查服务的状态 sudo ...

  2. 1.4.17 base标签

    如果我们定义的超链接在另一个窗口打开,代码如下: <!DOCTYPE html> <html lang="en"> <head> <met ...

  3. hdu3746 KMP的next数组应用,求项链首尾项链循环

    题意:       给你一个项链,问你最少加多少个珠子能满足整个项链是一个循环的项链(首尾相连) 思路:      KMP的简单应用只要了解next数组的意义就好说了,下面总结下  next在循环方面 ...

  4. Netcat瑞士军刀的简单使用

    目录 Netcat 常用参数: 常见的用法: 端口扫描: 聊天 文件传输 反弹shell 蜜罐 Netcat Netcat 常称为 nc,拥有"瑞士军刀"的美誉.nc 小巧强悍,可 ...

  5. 7.PHP Cookie与Session

    Cookie与Session Cookie Cookie功能 创建cookie <?PHP    setcookie("TMCookie" ,'www.baidu.com') ...

  6. net -snmp 的监控策略

    yum install net-snmp net-snmp-utils -y vim /etc/snmp/snmpd.conf 最后添加:rocommunity nmap 192.168.1.0/24 ...

  7. Pytest自动化测试-简易入门教程(03)

    今天分享内容的重点,和大家来讲一下我们的测试框架--Pytest 讲到这个框架的话呢,可能有伙伴就会问老师,我在学习自动化测试过程中,我们要去学一些什么东西? 第一个肯定要学会的是一门编程语言,比如说 ...

  8. java面试一日一题:如何设计一款垃圾回收器

    问题:如果让你设计一个垃圾回收器,你会考虑哪些问题 分析:该问题主要考察对java中垃圾回收器的理解,要理解怎么回收:一款好的垃圾回收器有哪些衡量指标 回答要点: 主要从以下几点去考虑, 1.垃圾回收 ...

  9. 日期格式化时注解@DateTimeFormat无效的问题分析

    作者:汤圆 个人博客:javalover.cc 背景 有时候我们在写接口时,需要把前台传来的日期String类型转为Date类型 这时我们可能会用到@DateTimeFormat注解 在请求数据为非J ...

  10. win10 下安卓源码同步小技巧

    win10下,通过 清华镜像源 AOSP 可以快速拿到 100G 的 .repo  备份 然后 用 repo sync 就可以得到 安卓源码,爽不爽! 下载到win10 e盘下,用powershell ...