系列博客链接:

(一)TensorFlow框架介绍:https://www.cnblogs.com/kongweisi/p/11038395.html

(二)TensorFlow框架之图与TensorBoard:https://www.cnblogs.com/kongweisi/p/11038517.html

(三)TensorFlow框架之会话:https://www.cnblogs.com/kongweisi/p/11038550.html

(四)TensorFlow框架之张量:https://www.cnblogs.com/kongweisi/p/11039237.html

本文概述:

  • 说明变量op的特殊作用
  • 说明变量op的trainable参数的作用
  • 应用global_variables_initializer实现变量op的初始化

1、变量

TensorFlow变量是表示程序处理的共享持久状态的最佳方法。变量通过 tf.Variable OP类以及tf.get_variable()类进行操作。

变量的特点:

  • 存储持久化
  • 可修改值
  • 可指定被训练

1.1 创建变量

  • tf.Variable(initial_value=None, trainable=True, collections=None, name=None)

    • initial_value:初始化的值
    • trainable:是否被训练
    • collections:新变量将添加到列出的图的集合中collections,默认为[GraphKeys.GLOBAL_VARIABLES],如果trainable是True变量也被添加到图形集合 GraphKeys.TRAINABLE_VARIABLES
# 特殊的创建张量OP
# 1、必须手动初始化
var = tf.Variable(tf.random_normal([2, 2], mean=0.0, stddev=1.0), name="var", trainable=True) with tf.Session() as sess:
sess.run(var)
  • 变量需要显示初始化,才能运行值
# 添加一个初始化变量的OP
# 1、变量显示初始化
init_op = tf.global_variables_initializer() with tf.Session() as sess:
# 2、运行初始化变量的OP
sess.run(init_op)
   # 或者直接这么做 sess.run(tf.global_variables_initializer())

1.2 变量OP的方法

 

给变量赋值一个新的值,返回一个新的变量

  • new_var = assign(value)   原变量变化
  • new_var = assign_add(delta)  原变量不变
var = tf.Variable(tf.random_normal([2, 2], mean=0.0, stddev=1.0), name="var", trainable=True)
# 给变量赋值一个新的值
var1 = var.assign([[2, 3], [4, 5]])
# 初始化变量OP
init_op = tf.global_variables_initializer()
# 给变量在原值的基础上,加上新的值
va = var.assign_add([[1, 3], [4, 5]])

with tf.Session() as sess:
  # 运行初始化op  
  sess.run(init_op)
  print(sess.run(va))
  print(sess.run(var))

关于变量的被训练,我会在后面的线性回归案例当中介绍

2、命名空间与共享变量

共享变量的主要用途在一些网络当中的参数共享, 由于在TensorFlow当中,只要我们定义的不同OP, 即使name参数指定一样,但实际上也并不是同一个变量。

如果想要达到重复利用变量的效果,我们就要使用tf.variable_scope()结合tf.get_variable()一起使用

2.1 定义一个相同名字的变量

var = tf.Variable(name='var', initial_value=[4], dtype=tf.float32)
var_double = tf.Variable(name='var', initial_value=[4], dtype=tf.float32) <tf.Variable 'var:0' shape=() dtype=float32_ref>
<tf.Variable 'var_1:0' shape=() dtype=float32_ref>

2.2 使用tf.variable_scope()修改OP命名空间

会在OP的名字前面增加命名空间的指定名字

with tf.variable_scope("name"):
var = tf.Variable(name='var', initial_value=[4], dtype=tf.float32)
var_double = tf.Variable(name='var', initial_value=[4], dtype=tf.float32) <tf.Variable 'name/var:0' shape=() dtype=float32_ref>
<tf.Variable 'name/var_1:0' shape=() dtype=float32_ref>

2.2 tf.get_variable共享变量

通过tf.get_variable的初始化与Variable参数一样, 但是要是实现共享需要打开 tf.variable_scope("name")中的reuse = tf.AUTO_REUSE参数

# 打开共享参数
# 或者
# with tf.variable_scope("name") as scope:
# 在需要使用共享变量的前面定义: scope.reuse_variables()
with tf.variable_scope("name", reuse=tf.AUTO_REUSE):
var = tf.Variable(initial_value=4.0, name="var", dtype=tf.float32)
var_double = tf.Variable(initial_value=4.0, name="var", dtype=tf.float32) var1 = tf.get_variable(initializer=tf.random_normal([2, 2], mean=0.0, stddev=1.0),
name="var1",
dtype=tf.float32)
var1_double = tf.get_variable(initializer=tf.random_normal([2, 2], mean=0.0, stddev=1.0),
name="var1",
dtype=tf.float32) with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
print(var1)
print(var1_double)

注意:TensorFlow和python不同, 它是维护一个所有OP名字的列表,不是以取的最前面的名字(自定义的接收结果,python变量)区分。

共享变量就相当于全局变量。

(第一章第五部分)TensorFlow框架之变量OP的更多相关文章

  1. (第一章第二部分)TensorFlow框架之图与TensorBoard

    系列博客链接: (一)TensorFlow框架介绍:https://www.cnblogs.com/kongweisi/p/11038395.html 本文概述: 说明图的基本使用 应用tf.Grap ...

  2. (第二章第二部分)TensorFlow框架之读取图片数据

    系列博客链接: (第二章第一部分)TensorFlow框架之文件读取流程:https://www.cnblogs.com/kongweisi/p/11050302.html 本文概述: 目标 说明图片 ...

  3. NHibernate.3.0.Cookbook第一章第五节Setting up a base entity class

    Setting up a base entity class设置一个实体类的基类 在这节中,我将给你展示怎么样去为我们的实体类设置一个通用的基类. 准备工作 完成前面三节的任务 如何去做 1.在Ent ...

  4. 第一章-第五题(你所在的学校有计算机科学专业和软件工程专业么?相关专业的教学计划和毕业出路有什么不同?阅读有关软件工程和计算机科学的区别的文章,谈谈你的看法。)--By 侯伟婷

    我所在的本科学校和研究生学校都有计算机科学专业和软件工程专业.具体的教学计划无从得到,所以此情况无从对比,但是我从本科教务处网站找到了计算机科学专业和软件工程专业有关专业方面的课程,现列表如下. 表格 ...

  5. tensorflow2.0学习笔记第一章第五节

    1.5简单神经网络实现过程全览

  6. 04373 C++程序设计 2019版 第一章习题五、程序设计题

    题目: 1.编写一个程序,将从键盘输入的n个字符串保存在一个一维数组A中.在输入字符串之前,先输入n的值.要求,数组A需要动态申请空间,程序运行结束前再释放掉. #include <iostre ...

  7. (第一章第六部分)TensorFlow框架之实现线性回归小案例

    系列博客链接: (一)TensorFlow框架介绍:https://www.cnblogs.com/kongweisi/p/11038395.html (二)TensorFlow框架之图与Tensor ...

  8. (第二章第四部分)TensorFlow框架之TFRecords数据的存储与读取

    系列博客链接: (第二章第一部分)TensorFlow框架之文件读取流程:https://www.cnblogs.com/kongweisi/p/11050302.html (第二章第二部分)Tens ...

  9. (第二章第三部分)TensorFlow框架之读取二进制数据

    系列博客链接: (第二章第一部分)TensorFlow框架之文件读取流程:https://www.cnblogs.com/kongweisi/p/11050302.html (第二章第二部分)Tens ...

随机推荐

  1. 010 Linux 文本统计与去重 (wc 和 uniq)

    wc 命令一般是作为组合命令的一员与其他命令一同起到统计的作用.而一般情况下使用wc -l 命令较多. uniq 可检查文本文件中重复出现的行,一般与 sort 命令结合使用.一起组合搭配使用完成统计 ...

  2. [USACO19JAN]Exercise Route P

    先让我们探索一下两条非树边以及树边能构成简单环的条件是什么,你会发现将第一条非树边的两个点在树上形成的链记为 \(W_1\),另一条即为 \(W_2\),那么当且仅当 \(W_1, W_2\) 有交时 ...

  3. 基于java处理.docx格式的word合并

    如下实例是将 2.docx和3.docx合并,写到empty.docx中,不适用于.doc格式,public static void main(String[] args) { File file1 ...

  4. Git简单多人协作

    感谢廖雪峰老师,引自他的Git教程. Git简单多人协作 首先,可以试图用git push origin <branch-name>推送自己的修改: 如果推送失败,则因为远程分支比你的本地 ...

  5. JAVA多线程学习十二 - Semaphere同步工具

    java 中Semaphere可类比操作系统信号量,硬件资源如IO.内存.磁盘等都是有固定量的,多个程序需要竞争这些资源,没有资源就需要被挂起. 一.类和方法摘要 构造函数: public Semap ...

  6. 用最笨的方法实现java控制台日历打印

    如果想用户自定义输入日期查询,可以通过Calendar的set方法和Scanner方法设置 Calendar类简单使用:https://blog.csdn.net/weixin_43670802/ar ...

  7. JVM学习五:性能监控工具

    一.系统性能监控 系统性能工具用于确定系统运行的整体状态,基本定位问题所在. Linux – uptime • 系统时间 • 运行时间 n 例子中为7分钟 • 连接数 n 每一个终端算一个连接 • 1 ...

  8. copy与内存管理

    1.copy与内存管理 浅拷贝 原对象引用计数器+1 必须对原对象进行释放 char *cstr = "this is a c string"; NSString *str1 = ...

  9. NSArray文件读写

    1.NSArray数据写入到文件中 NSArray *arr = @[@"lnj", @"lmj", @"jjj", @"xcq& ...

  10. sort、uniq、tr、cut、eval以及正则表达式

    sort.uniq.tr.cut.eval以及正则表达式 目录 sort.uniq.tr.cut.eval以及正则表达式 一.sort命令 1. sort的作用 2. 语法格式 3. 常用选项 4. ...