正题

题目链接:https://www.luogu.com.cn/problem/P4774


题目大意

\(n\)个龙血量为\(a_i\),回复能力为\(p_i\),死亡后掉落剑的攻击力\(t_i\),\(m\)把剑,攻击力为\(b_i\)。

从\(1\)开始打,每次使用不大于当前龙血量的剑中攻击力最低的一把(没有就用攻击力最低的),造成\(x\times atk\)点伤害,然后当前的剑坏掉。

求一个最小的\(x\)使得所有龙被攻击后血量是\(p_i\)的倍数。

\(1\leq n,m\leq 10^5\),满足\(p=1\)或者\(a_i\leq p_i\),所有\(p_i\)的公倍数不超过\(10^{12}\)


解题思路

额,先用\(set\)处理出每个龙用哪把剑打\(c_i\),然后就是对于每条龙的条件就是

\[c_ix\equiv a_i(mod\ p_i),c_ix\geq a_i
\]

后面那个条件可以去掉,我们先求出满足所有\(c_ix\geq a_i\)的最小\(x\),后面再调整。

然后前面那个东西可以用\(EXCRT\)搞了,假设我们上一次求到的答案为\(ans\),目前\(p_i\)的公倍数是\(M\),那么现在的通解就是\(ans+Mx\)。我们需要求出一个\(x\)满足

\[c_i(ans+Mx)\equiv a_i(mod\ p_i)
\]
\[\Rightarrow Mx+p_iy=a_i-c_i\times ans
\]

然后就可以扩欧合并了。


code

#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cctype>
#include<set>
#define ll __int128
using namespace std;
ll read(){
ll x=0,f=1; char c=getchar();
while(!isdigit(c)) {if(c=='-')f=-f;c=getchar();}
while(isdigit(c)) x=(x<<1)+(x<<3)+c-48,c=getchar();
return x*f;
}
void print(ll x)
{if(x>9)print(x/10);putchar(x%10+48);return;}
const ll N=1e5+10;
multiset<ll> s;
ll n,m,T,a[N],p[N],t[N],c[N];
ll exgcd(ll a,ll b,ll &x,ll &y){
if(!b){x=1;y=0;return a;}
ll d=exgcd(b,a%b,x,y);
ll z=x;x=y;y=z-a/b*y;
return d;
}
void work(){
n=read();m=read();s.clear();
ll mx=0;
for(ll i=1;i<=n;i++)a[i]=read();
for(ll i=1;i<=n;i++)p[i]=read();
for(ll i=1;i<=n;i++)t[i]=read();
for(ll i=1;i<=m;i++){
ll x=read();
s.insert(x);
}
for(ll i=1;i<=n;i++){
multiset<ll>::iterator it;
if(a[i]<*s.begin())it=s.begin();
else it=--s.upper_bound(a[i]);
c[i]=*it;s.erase(it);s.insert(t[i]);
mx=max(mx,(a[i]-1)/c[i]+1);
}
ll M=1,x,y,ans=0;
for(ll i=1;i<=n;i++){
ll d=exgcd(M*c[i],p[i],x,y);
ll w=a[i]-c[i]*ans,v=p[i]/d;
if(w%d){puts("-1");return;}
x=w/d*x%v;ans=ans+x*M;
M=M*v;ans=(ans%M+M)%M;
}
if(ans<mx)ans+=(mx-ans+M-1)/M*M;
print(ans);putchar('\n');
}
signed main()
{
scanf("%lld",&T);
while(T--){work();}
return 0;
}

P4774-[NOI2018]屠龙勇士【EXCRT】的更多相关文章

  1. P4774 [NOI2018]屠龙勇士

    P4774 [NOI2018]屠龙勇士 先平衡树跑出打每条龙的atk t[] 然后每条龙有\(xt \equiv a[i](\text{mod }p[i])\) 就是\(xt+kp[i]=a[i]\) ...

  2. [洛谷P4774] [NOI2018]屠龙勇士

    洛谷题目链接:[NOI2018]屠龙勇士 因为markdown复制过来有点炸格式,所以看题目请戳上面. 题解: 因为杀死一条龙的条件是在攻击\(x\)次,龙恢复\(y\)次血量\((y\in N^{* ...

  3. 洛谷 P4774 [NOI2018] 屠龙勇士

    链接:P4774 前言: 交了18遍最后发现是多组数据没清空/ll 题意: 其实就是个扩中. 分析过程: 首先发现根据题目描述的选择剑的方式,每条龙对应的剑都是固定的,有查询前驱,后继(在该数不存在前 ...

  4. 洛谷P4774 [NOI2018]屠龙勇士 [扩欧,中国剩余定理]

    传送门 思路 首先可以发现打每条龙的攻击值显然是可以提前算出来的,拿multiset模拟一下即可. 一般情况 可以搞出这么一些式子: \[ atk_i\times x=a_i(\text{mod}\ ...

  5. luogu P4774 [NOI2018]屠龙勇士

    传送门 这题真的是送温暖啊qwq,而且最重要的是yyb巨佬在Day2前几天正好学了crt,还写了博客 然而我都没仔细看,结果我就同步赛打铁了QAQ 我们可以先根据题意,使用set维护,求出每次的攻击力 ...

  6. Luogu4774 NOI2018 屠龙勇士 ExCRT

    传送门 原来NOI也会出裸题啊-- 用multiset求出对付每一个BOSS使用的武器威力\(ATK_i\),可以得到\(m\)个式子\(ATK_ix \equiv a_i \mod p_i\) 看起 ...

  7. BZOJ5418:[NOI2018]屠龙勇士(exCRT,exgcd,set)

    Description Input Output Sample Input 23 33 5 74 6 107 3 91 9 10003 23 5 64 8 71 1 11 1 Sample Outpu ...

  8. [NOI2018]屠龙勇士(exCRT)

    首先很明显剑的选择是唯一的,直接用multiset即可. 接下来可以发现每条龙都是一个模线性方程.设攻击第i条龙的剑的攻击力为$s_i$,则$s_ix\equiv a_i\ (mod\ p_i)$. ...

  9. (伪)再扩展中国剩余定理(洛谷P4774 [NOI2018]屠龙勇士)(中国剩余定理,扩展欧几里德,multiset)

    前言 我们熟知的中国剩余定理,在使用条件上其实是很苛刻的,要求模线性方程组\(x\equiv c(\mod m)\)的模数两两互质. 于是就有了扩展中国剩余定理,其实现方法大概是通过扩展欧几里德把两个 ...

  10. BZOJ 5418: [Noi2018]屠龙勇士 EXCRT+multiset

    题解:求解形如 $A[i]ans\equiv b[i](mod$ $p[i])$ 的 $x$ 的最小正整数解. 考虑只有一个等式,那么可以直接化成 $exgcd$ 的形式:$A[i]ans+p[i]y ...

随机推荐

  1. Clusternet - 新一代开源多集群管理与应用治理项目

    作者 徐迪,腾讯云容器技术专家. 汝英哲,腾讯云高级产品经理. 摘要 在过去的数年里,云计算领域经历了多次巨大的变革,当前越来越多的组织将应用部署在本地和云上的多个基础设施平台上,这些平台可能是两个公 ...

  2. 动态数据库PI、edna insql、infoplus简单了解

    一.动态数据库概念 动态数据库(DDL)是做为共享函数库的可执行文件.动态数据库提供了一种方法,使进程可以调用不属于其可执行代码的函数.说白了就是一个.dll可执行文件,其中有可执行代码,进程可以调用 ...

  3. [ASP.NET MVC]@RenderSection,@RenderBody(),@RenderPage

    1.@RenderBody()  作用和母版页中的服务器控件类似,当创建基于此布局页面的视图时,视图的内容会和布局页面合并,而新创建视图的内容会通过布局页面的@RenderBody()方法呈现在标签之 ...

  4. pyspark启动与简单使用----本地模式(local)----shell

    在Spark中采用本地模式启动pyspark的命令主要包含以下参数:–master:这个参数表示当前的pyspark要连接到哪个master,如果是local[*],就是使用本地模式启动pyspark ...

  5. 基于mysql的sakila数据库脚本分析

    本例是基于mysql的sakila数据库脚本的复杂查询分析,大家可以去mysql官网上下载此脚本:也可以进入我的资源页进行下载: 关系图如下: 下面是查询的案例: 1.查询某部电影的所属类别,语言 S ...

  6. 微信小程序学习笔记四 自定义组件

    1. 自定义组件 类似Vue或react中的自定义组件 小程序允许我们使用自定义组件的方式来构建页面 1.1 创建自定义组件 类似于页面, 一个自定义组件由json wxml wxss js 4个文件 ...

  7. C# 使用正则表达式替换PPT中的文本(附vb.net代码)

    文本介绍如何在C#程序中使用正则表达式替换PPT幻灯片中的指定文本内容.具体操作步骤如下: 1. 在程序中引用Spire.Presentation.dll.两种方法可参考如下: (1)直接在程序中通过 ...

  8. 《手把手教你》系列技巧篇(二十三)-java+ selenium自动化测试-webdriver处理浏览器多窗口切换下卷(详细教程)

    1.简介 上一篇讲解和分享了如何获取浏览器窗口的句柄,那么今天这一篇就是讲解获取后我们要做什么,就是利用获取的句柄进行浏览器窗口的切换来分别定位不同页面中的元素进行操作. 2.为什么要切换窗口? Se ...

  9. Linux下SSH以及SSH秘钥

    一.基于秘钥方式实现远程连接 第一步:创建密钥对(在管理端服务器上操作) 中间的输入项可以直接回车 ssh-keygen -t dsa 第二步:分发公钥(在管理端服务器执行) 这个步骤需要输入一个ye ...

  10. linu命令进阶篇

    预备知识: 本实验要求实验者具备如下的相关知识. 前面我们学习了linux的文件系统,了解的文件系统的结构,也学了linux档案的属性和权限,以及其设定. 当我们执行命令操作一个文件的时候,却不知道这 ...