P5540-[BalkanOI2011]timeismoney|最小乘积生成树【最小生成树,凸壳】
正题
题目链接:https://www.luogu.com.cn/problem/P5540
题目大意
给出\(n\)个点\(m\)条边边权是一个二元组\((a_i,b_i)\),求出一棵生成树最小化
\]
的情况下最小化\(\sum_{e\in T}a_e\)
\(1\leq n\leq 200,1\leq m\leq 10^4\)
解题思路
这种带乘积的可以维护凸壳,对于一棵生成树\(T\)我们视为一个\((\sum_{e\in T}a_e,\sum_{e\in T}b_i)\)的点,这样我们打答案一定在下凸壳上。
可以用一种分治求凸壳的方法,我们先找出下凸壳的两个端点(\(x\)最小的和\(y\)最小的)记为\(A,B\),然后找到一个在\(A\)与\(B\)的连边下面的一个最凸的点\(C\)(可以视为最大化\(S_{\bigtriangleup ACB}\),这样\(C\)一定在凸壳上),然后分治下去做\(\vec{AC}\)和\(\vec{CB}\)。
考虑怎么求这个\(C\),就是最大化\(\vec{AC}\times \vec{CB}\)
\]
\]
然后就是相当于最小化\(x_C(y_B-y_A)+y_C(x_A-x_B)\),拿这个当边权跑就可以跑出\(C\)了。
然后时间复杂度据说是\(O(m\log m\sqrt{\ln n!})\)
code
#include<cstdio>
#include<cstring>
#include<algorithm>
#define ll long long
using namespace std;
const int N=210,M=1e4+10;
struct node{
ll x,y,w,id;
}e[M];
struct point{
ll x,y;
point(ll xx=0,ll yy=0)
{x=xx;y=yy;return;}
}ans;
ll n,m,x[M],y[M],a[M],b[M],fa[N];
point operator-(point x,point y)
{return point(x.x-y.x,x.y-y.y);}
ll operator*(point x,point y)
{return x.x*y.y-x.y*y.x;}
bool cmp(node x,node y)
{return (x.w==y.w)?(a[x.id]<a[y.id]):(x.w<y.w);}
ll find(ll x)
{return (fa[x]==x)?x:(fa[x]=find(fa[x]));}
point Kruskal(){
ll cnt=0;point res=0;
for(ll i=1;i<=n;i++)fa[i]=i;
sort(e+1,e+1+m,cmp);
for(ll i=1;i<=m;i++){
ll x=find(e[i].x),y=find(e[i].y);
if(x==y)continue;
fa[x]=y;cnt++;
res.x+=a[e[i].id];
res.y+=b[e[i].id];
if(cnt==n-1)break;
}
if(res.x*res.y<ans.x*ans.y)ans=res;
else if(res.x*res.y==ans.x*ans.y&&res.x<ans.x)
ans=res;
return res;
}
void solve(point A,point B){
for(ll i=1;i<=m;i++)
e[i]=(node){x[i],y[i],(B.x-A.x)*b[i]+(A.y-B.y)*a[i],i};
point C=Kruskal();
if((C-A)*(B-A)<=0)return;
solve(A,C);solve(C,B);
}
signed main()
{
scanf("%lld%lld",&n,&m);
for(ll i=1;i<=m;i++){
scanf("%lld%lld%lld%lld",&x[i],&y[i],&a[i],&b[i]);
x[i]++;y[i]++;
}
ans.x=ans.y=1e9;
for(ll i=1;i<=m;i++)e[i]=(node){x[i],y[i],a[i],i};
point A=Kruskal();
for(ll i=1;i<=m;i++)e[i]=(node){x[i],y[i],b[i],i};
point B=Kruskal();
solve(A,B);
printf("%lld %lld\n",ans.x,ans.y);
return 0;
}
P5540-[BalkanOI2011]timeismoney|最小乘积生成树【最小生成树,凸壳】的更多相关文章
- 洛谷 P5540 - [BalkanOI2011] timeismoney | 最小乘积生成树(最小生成树)
洛谷题面传送门 大概是一个比较 trivial 的小 trick?学过了就不要忘了哦( 莫名奇妙地想到了 yyq 的"hot tea 不常有,做过了就不能再错过了" 首先看到这种二 ...
- bzoj2395[Balkan 2011]Timeismoney最小乘积生成树
所谓最小乘积生成树,即对于一个无向连通图的每一条边均有两个权值xi,yi,在图中找一颗生成树,使得Σxi*Σyi取最小值. 直接处理问题较为棘手,但每条边的权值可以描述为一个二元组(xi,yi),这也 ...
- 【BZOJ2395】【Balkan 2011】Timeismoney 最小乘积生成树
链接: #include <stdio.h> int main() { puts("转载请注明出处[辗转山河弋流歌 by 空灰冰魂]谢谢"); puts("网 ...
- Bzoj2395: [Balkan 2011]Timeismoney(最小乘积生成树)
问题描述 每条边两个权值 \(x,y\),求一棵 \((\sum x) \times (\sum y)\) 最小的生成树 Sol 把每一棵生成树的权值 \(\sum x\) 和 \(\sum y\) ...
- bzoj 2395 [Balkan 2011]Timeismoney——最小乘积生成树
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2395 如果把 \( \sum t \) 作为 x 坐标,\( \sum c \) 作为 y ...
- bzoj 2395 Timeismoney —— 最小乘积生成树
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2395 参考博客:https://www.cnblogs.com/autsky-jadek/p ...
- Luogu5540 最小乘积生成树
Luogu5540 最小乘积生成树 题目链接:洛谷 题目描述:对于一个\(n\)个点\(m\)条边的无向连通图,每条边有两个边权\(a_i,b_i\),求使\((\sum a_i)\times (\s ...
- HDU5697 刷题计划 dp+最小乘积生成树
分析:就是不断递归寻找靠近边界的最优解 学习博客(必须先看这个): 1:http://www.cnblogs.com/autsky-jadek/p/3959446.html 2:http://blog ...
- 【算法】最小乘积生成树 & 最小乘积匹配 (HNOI2014画框)
今天考试的时候果然题目太难于是我就放弃了……转而学习了一下最小乘积生成树. 最小乘积生成树定义: (摘自网上一篇博文). 我们主要解决的问题就是当k = 2时,如何获得最小的权值乘积.我们注意到一张图 ...
随机推荐
- Java:学习什么是多线程
线程是什么 进程是对CPU的抽象,而线程更细化了进程的运行流程 先看一下这个图 线程和进程的关系有 进程中就是线程在执行,所有(主)线程执行完了进程也就结束了 多个线程从1秒钟是同时运行完成,从1纳秒 ...
- [ES6深度解析]13:let const
当Brendan Eich在1995年设计了JavaScript的第一个版本时,他犯了很多错误,包括从那时起就成为该语言一部分的一些错误,比如Date对象和当你不小心将它们相乘时对象会自动转换为NaN ...
- 不用调整Nginx,SpringBoot也能解决前端访问的跨域问题
1.什么情况下会出现跨域问题 通常,在前端工程师的开发过程中,往往在本地机器启动前端服务, 而调用的后端接口服务是在另外一台机器运行,这时就会出现跨域问题,让接口无法调通. 而到了测试环境和生产环境, ...
- Android WorkManager 定时任务
App有时可能需要定期运行某些工作.例如,可能要定期备份数据.上传信息到服务器,定期获取新的内容等等. 在app运行期间,我们使用Handler也可以完成定期的功能.在这里我们介绍WorkManage ...
- 一种封装Retrofit的方法,可以自动解析Gson,回避Method return type must not include a type variable or wildcard: retrofit2.Call<T>的问题
封装目的:屏蔽底层实现,提供统一接口,并支持Gson自动转化 最初封装: //请求方法 interface RequestListener { interface PostListener { @PO ...
- 20210712 noip12
考场 第一次和 hzoi 联考,成功给 sdfz 丢人 尝试戴耳罩,发现太紧了... 决定改变策略,先用1h看题,想完3题再写. T1 一下想到枚举最大值,单调栈求出每个点能作为最大值的区间,然后以这 ...
- noip模拟40
\(\color{white}{\mathbb{名之以:海棠}}\) 考场 \(t1\) 看见题意非常简单,觉得可能是个简单题 暴力算出几个小样例右端点右移的时候左端点都是单调右移的,以为具有单调性, ...
- WEB漏洞——文件上传
有关文件上传的知识 为什么文件上传存在漏洞 上传文件时,如果服务端代码未对客户端上传的文件进行严格的验证和过滤就容易造成可以上传任意文件的情況,包括上传脚本文件(asp.aspx.php.jsp等格式 ...
- inet_aton和inet_ntoa
3.1 inet_aton() int inet_aton(const char *cp, struct in_addr *inp); 参数说明: cp : IPv4点分十进制字符串,例如" ...
- 传递集合参数以及SpringMVC和Struts2的区别
一.传递集合参数 二.和Struts2的区别 Struts2是基于类封装请求参数,SpringMVC是基于方法封装参数: